

AFRL-IF-RS-TR-2004-33

Final Technical Report
February 2004

MULTILEVEL COORDINATION MECHANISMS
FOR REAL-TIME AUTONOMOUS AGENTS

University of Michigan

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J356

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-33 has been reviewed and is approved for publication

APPROVED: /s/

FRANK H. BORN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2004

3. REPORT TYPE AND DATES COVERED
Final Mar 98 – Apr 03

4. TITLE AND SUBTITLE
MULTILEVEL COORDINATION MECHANISMS FOR REAL-TIME
AUTONOMOUS AGENTS

6. AUTHOR(S)
Edmund H. Durfee

5. FUNDING NUMBERS
C - F30602-98-2-0142
PE - 63760E
PR - AGEN
TA - T0
WU - 06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Michigan
3003 South State Street
Ann Arbor Michigan 48109-1274

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-33

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank H. Born/IFTB/(315) 330-4726/ Frank.Born@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report summarizes the research and development efforts performed in the DARPA-sponsored project in Multilevel
Coordination Mechanisms for Real-Time Autonomous Agents, as part of the DARPA Control of Agent Based Systems
(CoABS) program. The work was performed from May of 1998 to April of 2003. During the course of the project,
significant advances have been made in the area of plan-based control and coordination of semi-autonomous agents.
Specifically, techniques for modeling and coordinating agents based on hierarchical representations of their plans have
been shown to be efficient and effective in enabling multiple agents, each with its own sophisticated plans and
objectives, to predict and resolve unintended conflicts between their operations, as well as to anticipate and exploit
opportunities for cooperation. The basic research results have been implemented into a Multilevel Coordination Agent
(MCA) that operates on the CoABS Grid. The MCA has been demonstrated as part of the Coalition Agents Experiment
(CoAX), culminating in the October 2002 demonstration at the Naval Warfare Development Center in Newport, RI.

15. NUMBER OF PAGES
95

14. SUBJECT TERMS
Agents Systems, Multi-Agent, Software Agent, Multi-Level Coordination, Planning,
Scheduling, Autonomous Agents 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

1 Introduction... 1

1.1 Project Objectives ... 1
1.2 Project Approach .. 1

2 Research Results ... 2
2.1 Multilevel Modeling ... 2
2.2 Conflict Detection and Resolution.. 2
2.3 Improving Coordination.. 3
2.4 Experimental Results .. 3

3 Principal Project Accomplishments.. 3
3.1 Technology Base... 3
3.2 Software Deliverables ... 4
3.3 Technology Transition .. 4
3.4 Student Training.. 5

4 Bibliography ... 5
5 Appendices.. 7
Appendix A: Challenges to Scaling-Up Agent Coordination Strategies...9
Appendix B: Strategies for Discovering Coordination Needs in MultiAgent Systems...............................16
Appendix C: Theory for Coordinating Concurrent Hierarchical Planning Agents Using Summary
 Information...24
Appendix D: Performance of Coordinating Concurrent Hierarchical Planning Agents Using Summary
 Information...32
Appendix E: Using Abstraction in Planning and Scheduling..46
Appendix F: A Satisficing Multiagent Plan Coordination Algorithm for Dynamic Domains...................58
Appendix G: Discovering and Exploiting Synergy Between Hierarchical Planning Agents......................60
Appendix H: Limiting Disruption in Multiagent Replanning..68
Appendix I: Coalition Agents Experiment: Multi-Agent Co-operation in an International Coalition
 Setting...76

goodelle
Text Box
 Table of Contents

1 Introduction

1.1 Project Objectives
Agile and rapid teaming, such as in the concerted application of coalition forces in uncertain,
confrontational settings, requires efficiently coordinating mission plans that also give team members
some room to improvise mission details around unexpected or previously unobservable events. The goal
of this project has been to develop technologies that enable multi-level coordination: participating agents
should be able to decide on the level of plan detail at which to make coordination commitments, based
on the current circumstances and their needs to balance predictability to each other with flexibility to
react autonomously. By focusing only on details of interactions that matter in particular situations,
multi-level coordination techniques will lead to scalable, efficient, and robust coordination outcomes.
These benefits have been evaluated in analytical and empirical studies, and demonstrated through
integrated experiments in simulated coalition operations tasks.

1.2 Project Approach
The principal insight behind this project’s multi-level coordination technologies has been that
hierarchical models of an agent’s plans and goals can be exploited to support coordination that strikes a
balance between predictability and flexibility that is more tailored for particular mission needs. Many
problem domains can be effectively planned for in a hierarchical manner, where the broad outlines of
behavior are laid out and then incrementally refined in time, space, and scope of participation. Rather
than use hierarchy only as a means to an end (a detailed plan), multi-level coordination technologies
allow agents to retain information at the various levels, and therefore an agent can represent what it is
doing at multiple levels of detail all at once. Because it will need to engage in detailed coordination with
some (physically or conceptually proximate) agents while at the same time coordinating in looser ways
with other agents, the agent can communicate models of itself at the right level of detail for different
coordination relationships simultaneously. By receiving such models from others, an agent can ensure
that its decisions fit into the combined efforts of the agent system without getting bogged down in
computations at unnecessarily detailed levels.

To represent a plan space, this project has adapted a representation of plans as nested procedures in
increasing detail. Unlike traditional approaches where detailed plans are formulated in their entirety
before execution, plans can be incrementally elaborated such that the most appropriate procedure to
accomplish a particular goal is chosen only when that goal is to be achieved next. By comparing
conditions that must hold over different intervals in agents’ plans, timing relations that must hold for the
plans to avoid unintentionally interfering with each other can be inferred. By propagating information
about conditions that hold and about timing constraints between subplans upward through the hierarchy,
relationships between plans at various levels of abstraction can thus be identified. This research includes
analyses to ensure soundness and completeness of these methods, along with understanding their
computational complexity. To amortize the computational costs, an additional innovation in this project
is to enable agents to store previously computed coordination solutions for reuse under similar future
circumstances.

The ability to detect and resolve unintended interactions at any of many levels of detail improves
scalability, because an agent can use abstract models to quickly identify just those agents it needs to
coordinate with, and can dynamically select the level of detail at which to coordinate with them. This
research has included developing new, principled techniques for making these decisions, along with

1

durfee2
Approved

recovery mechanisms for adapting to changing circumstances that mismatch previous coordination
decisions.

Introducing the added dimension of being able to flexibly set the level of detail for agents to model each
other at run time is becoming increasingly critical in the technologically and informationally-rich
battlefield of the future. The methods that have been developed here should be widely applicable for
systems in which the "right" level for coordination cannot be predetermined, but instead must be
changeable in response to system needs and time-critical opportunities. The efficacy of our techniques
has been demonstrated by implementing them as services in the Control of Agent Based Systems
(CoABS) Grid, and used to coordinate the rapid deployment of (simulated) coalition forces where
the lack of prior joint traing and shared understanding can otherwise lead to uncoordinated activities,
with consequences ranging from minor (wasted effort) to major (friendly fire).

2 Research Results
This project has developed foundational underpinnings and operational prototypes of techniques for
coordinating agents efficiently and effectively based on multilevel plan models and hierarchical
protocols. Some of these main thrusts are very briefly summarized below. Overviews of this work have
appeared elsewhere (Durfee, 2001), (Durfee, 2002a), (Durfee, 2002b), (Durfee, 2003).

2.1 Multilevel Modeling
Building from our initial conception of exploiting the structure inherent in hierarchical plan
representations, as exemplified by HTNs (Hierarchical Task Networks) and exploiting in systems like
PRS (the Procedural Reasoning System), a fundamental challenge that we faced was in capturing the
relevant information needed for coordination at the abstract plan levels, based on the ways in which the
abstract plans could potentially be refined. We developed sound methods for generating summary
information by propagating the conditions associated with alternative plan refinements upward in the
abstraction hierarchy (Clement, 1999b), (Clement and Durfee, 2000a), (Clement and Durfee, 2000b). A
side benefit of these advances is that they provide information that proves to be extremely useful in
improving tractability for single-agent planning as well (Clement et al, 2001a), (Clement et al, 2001b).

2.2 Conflict Detection and Resolution
Armed with more complete hierarchical models, agents can engage in a dialogue to discover potential
conflicts and resolve them. Our research efforts designed this protocol, which works from more abstract
levels downward to focus the search for conflicts and resolutions only on the subportions of the agents’
plans that could potentially interact (Clement and Durfee, 1999a), (Clement and Durfee, 1999c). This
results in potentially significant streamlining of coordination, permitting the scale up to larger numbers
of loosely-interacting agents (Clement and Durfee, 2000c), (Clement, 2002).

In addition, an analysis of potential interactions among agents’ primitive actions can lead to the
development of a constraint network representing constraints on the overlapping and/or sequential
pursuit of actions by multiple agents (Pappachan, 2002). By imposing the hierarchical structure on top
of this constraint network, agents can incrementally refine their plans and, at runtime, detect and resolve
potential conflicts during dynamic operation (Pappachan and Durfee, 2000), (Pappachan and Durfee,
2001).

2

2.3 Improving Coordination
The concepts developed for detecting and resolving conflicts can also be applied to identifying and
exploiting opportunities for cooperation. That is, different agents might be pursuing similar objectives,
and could benefit from working together to avoid redundant efforts. Our research as part of this project
has made an initial foray into this area, by extending single-agent plan merging techniques to the
multiagent case (Cox and Durfee, 2002), (Cox and Durfee, 2003).

We have also introduced several efficiency improvements to deal with greater system dynamics and for
repeated agent interactions. For the former, we recognized that, after they have coordinated, agents
might need to change their plans because of changes to the environment or the arrival/departure of
agents. The trouble is that the effort spent to create the current coordination solution might be
completely lost if the methods simply coordinate (from the top-down) as if from scratch. We have
defined concepts of “disruption” to prior coordination solutions, and have revised the search methods to
try to find less disruptive solutions sooner (Bartold and Durfee, 2003). For situations where agents
might engage in repeated encounters, moreover, it would be wasteful to recalculate the same
coordination solutions repeatedly. We have developed methods based on case-based reasoning
techniques by which agents save previous coordination solutions to reuse under similar future
circumstances (Cox et al, 2001).

2.4 Experimental Results
All of the various research results described above have been prototyped and tested in a variety of ways.
The hierarchical representations, coupled with the issues of dynamic execution and plan reuse, have
been incorporated into the UMPRS (University of Michigan Procedural Reasoning System) architecture
(Cox et al, 2001). A more generic instantiation of these results has been the prototype of the Multilevel
Coordination Agent (MCA) that was developed and deployed as a service on the CoABS Grid. The
MCA was a part of the Coalition Agents Experiment (CoAX) effort, serving to deconflict the plans of
coalition partners to prevent catastrophic interactions (such as friendly fire) and exploit cooperative
opportunities (transporting various types of cargo) in the simulated coalition operations (Allsopp et al,
2002). Some of these ideas have also been transitioned to space applications, and have been tested in
problems involving the coordination of robotic spacecraft (Clement et al, 2001c).

3 Principal Project Accomplishments

3.1 Technology Base
Designed, developed, implemented, and analyzed methods for generating summary information in
concurrent hierarchical plans (CHiPs). Proved correctness based on a principled semantics for plan
execution. (See, for example, (Clement and Durfee, 1999b).)

Designed, developed, implemented, and evaluated mechanisms for determining plan interrelationships
based on summary information. Proved soundness and completeness. Formally analyzed computational
complexity of the algorithms, proving that they can be exponentially faster than techniques that do not
employ hierarchical plan structures. (See, for example, (Clement and Durfee, 2000b).)

Developed and tested heuristics, including the Expand-Most-Threats-First heuristic, showing that
appropriate heuristics can greatly decrease time for coordination between agents and for hierarchical

3

planning in the single agent case. Implemented these techniques with other planners, while also
introducing the capability of modeling metric resource usage. (See, for example, (Clement et al, 2001).)

Devised and prototyped algorithms for preprocessing plan hierarchies to identify temporal dependencies
between plans at different levels of abstraction and represent these dependencies in a temporal constraint
network. Demonstrated how the temporal constraint network, coupled with efficient constraint
propagation methods, can support flexible coordination in dynamic application domains, including the
ability to repair plans as needed. The plan repair algorithm was tested against sample plans from the
Coalition domain, where online coordination yielded plans that were 112% more reliable, 11% faster,
and required 24% less coordination overhead than using offline coordination that cannot adjust to
unexpected events. (See, for example (Pappachan and Durfee, 2001).)

Enhanced failure recovery mechanisms to minimize the degree of disruption to existing commitments
between agents. This reduces the coordination overhead incurred for instituting new commitments by
an average of 39% in some sample test cases. (See, for example, (Bartold and Durfee, 2003).)

Extended the plan deconfliction capabilities to also exploit the hierarchical plan models so as to
efficiently discover opportunities for synergistic, cooperative interactions among separately planning
agents. (See, for example, (Cox and Durfee, 2003).)

3.2 Software Deliverables
Automated the translation of coordinated plan information between our algorithms and the UM-PRS
agent architecture (which was also modified to communicate through the CoABS Grid). The UM-PRS
agents can not only automatically have their uncoordinated plans coordinated by the mechanisms, but
can also store and reuse the coordinated solutions. (See, for example, (Cox et al, 2001).)

Implemented core coordination technologies into the Multilevel Coordination Agent (MCA), which
resides on the CoABS Grid and has been part of the CoABS Grid release. Integrated this component
with relevant other components of the Coalition (CoAX) Technology Integration Experiment
(TIE) to support deconfliction of, and synergistic interaction between, plans formulated by the
British Defence Evaluation and Research Agency (DERA) Master Battle Planner (MBP) and plans
of other allied forces. In doing so, augmented MCA to ensure compliance with MBP’s firm execution
time constraints, developed translator between the plan representations used by MBP and MCA, and
worked with CoAX partners to develop realistic, challenging demonstration scenarios for the 2001 and
2002 demonstrations. (See, for example, (Allsopp et al, 2002).)

3.3 Technology Transition
Coalition (CoAX) TIE: As part of the CoAX TIE, this project integrated its results into that TIE, such
that the coalition planning was assured to be conflict free and could exploit serendipitous opportunities
for cooperation (Allsopp et all, 2002). There is speculation among colleagues who have participated in
real coalition operations that this kind of technology can lead to improvements in coalition planning
processes as well as outcomes. As CoAX transitions, as planned, into military applications across
multiple branches of the forces (and internationally), this project’s coordination technology can
transition with it.

4

NASA-JPL: Members of this project have been engaged in transitioning a number of these ideas into
NASA applications, especially in planetary rover technology, in which prototype implementations and
evaluations have been conducted (Clement et al, 2001c).

3.4 Student Training
This project supported, in part, the following graduate students:

• Bradley J. Clement (PhD 2002): Abstract Reasoning for MultiAgent Coordination and Planning.
• Pradeep M. Pappachan (PhD 2002): Coordinating Plan Execution in MultiAgent Environments.
• Jeffrey S. Cox (MS 2002, PhD 2005 (expected)): Discovering Synergy Between Hierarchical

Planning Agents.
• Thomas Bartold (MS 2002, PhD 2006 (expected)): Limiting Disruption in MultAgent

Replanning.
• Haksun Li (PhD 2004 (expected)): Coordination Protocols for Real-Time Agents.

4 Bibliography
Below are papers whose results were, at least in part, supported by this project.

(Allsopp et al, 2002) David N. Allsopp, Patrick Beautement, Jeffrey M. Bradshaw, Edmund H. Durfee,
Michael Kirton, Craig A. Knoblock, Niranjan Suri, Austin Tate, and Craig W. Thompson.
“Coalition Agents Experiment: Multiagent Cooperation in International Coalitions.” IEEE
Intelligent Systems, 17(3):26-35, May/June 2002.

(Bartold and Durfee, 2003) Thomas Bartold and Edmund H. Durfee. “Limiting Disruption in
Multiagent Replanning.” To appear in Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, July 2003.

(Clement and Durfee, 1999a) Bradley J. Clement and Edmund H. Durfee. “Top-Down Search for
Coordinating the Hierarchical Plans of Multiple Agents.” In Proceedings of the Third International
Conference on Autonomous Agents, pages 252-259, May 1999.

(Clement and Durfee, 1999b) Bradley J. Clement and Edmund H. Durfee. “Theory for Coordinating
Concurrent Hierarchical Planning Agents Using Summary Information.” In Proceedings of the
National Conference on Artificial Intelligence (AAAI-99), pages 495-502, July 1999.

(Clement and Durfee, 1999c) Bradley J. Clement and Edmund H. Durfee. “Identifying and Resolving
Conflicts among Agents with Hierarchical Plans.” In AAAI Workshop on Negotiation: Settling
Conflicts and Identifying Opportunities, AAAI Technical Report WS-99-12, 6-11, 1999.

(Clement and Durfee, 2000a) Bradley J. Clement and Edmund H. Durfee. “Exploiting Domain
Knowledge with a Concurrent Hierarchical Planner.” AI and Planning Systems (AIPS-2000)
Workshop on Analysing and Exploiting Domain Knowledge for Efficient Planning, Working Notes,
57-62, April 2000.

(Clement and Durfee, 2000b) Bradley J. Clement and Edmund H. Durfee. “Performance of
Coordinating Concurrent Hierarchical Planning Agents Using Summary Information.” In
Proceedings of the 2000 International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2000), pages 202-216, July 2000.

(Clement and Durfee, 2000c) Bradley J. Clement and Edmund H. Durfee. “Performance of
Coordinating Concurrent Hierarchical Planning Agents Using Summary Information.” (abstract)

5

Proceedings of the Fourth International Conference on MultiAgent Systems, pages 373-4, July
2000.

(Clement et al, 2001a) Bradley J. Clement, Anthony C. Barrett, Edmund H. Durfee and Gregg R.
Rabideau. “Planning with Resources at Multiple Levels of Abstraction.” Proceedings of the IJCAI-
01 Workshop on Planning with Resources, August 2001.

(Clement et al, 2001b) Bradley J. Clement, Anthony C. Barrett, Gregg R. Rabideau, and Edmund H.
Durfee. “Using Abstraction in Planning and Scheduling.” In Proceedings of the Sixth European
Conference on Planning (ECP-01), pages 145-156, September 2001.

(Clement et al, 2001c) Bradley J. Clement, Anthony C. Barrett, Gregg R. Rabideau, and Edmund H.
Durfee. "Using Abstraction to Coordinate Multiple Robotic Spacecraft." Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2140-2147, October
2001.

(Clement, 2002) B. J. Clement. Abstract Reasoning for MultiAgent Coordination and Planning. PhD
Thesis, May 2002.

(Cox et al, 2001) Jeffrey S. Cox, Bradley C. Clement, Pradeep M. Pappachan, and Edmund H. Durfee.
“Integrating Multiagent Coordination with Reactive Plan Execution.” (abstract) Proceedings of the
ACM Conference on Autonomous Agents (Agents-01), pages 149-150, June 2001.

(Cox and Durfee, 2002) Jeffrey S. Cox and Edmund H. Durfee. “Discovering and Exploiting Synergy
Between Hierarchical Planning Agents.” In Proceedings of the AAAI 2002 Workshop on Planning
With and For MultiAgent Systems, July, 2002.

(Cox and Durfee, 2003) Jeffrey S. Cox and Edmund H. Durfee. “Discovering and Exploiting Synergy
between Hierarchical Planning Agents.” To appear in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, July 2003.

(Durfee, 2001) Edmund H. Durfee. “Scaling Up Agent Coordination Strategies.” IEEE Computer
34(7):39-46, July 2001.

(Durfee, 2002a) Edmund H. Durfee. “Strategies for Discovering Coordination Needs in Multi-Agent
Systems.” The DoD Software Tech News, 5(1):3-8, January 2002.

(Durfee, 2002b) Edmund H. Durfee. “Strategies for Discovering Coordination Needs in Multi-Agent
Systems.” In M. d’Inverno, M. Luck, M. Fisher, and C. Preist (eds.), Foundations and Applications
of Multi-Agent Systems: UKMAS Workshops 1996-2000 Selected Papers, pages 19-26, Springer-
Verlag Lecture Notes in AI 2403, Berlin 2002. (Originally appeared in The DoD Software Tech
News, 5(1):3-8, January 2002.)

(Durfee, 2003) Edmund H. Durfee. “Challenges to Scaling Up Agent Coordination Strategies.” To
appear in T. Wagner (ed.), Multi-Agent Systems: An Application Science, Kluwer Academic
Publishers, 2003.

(Pappachan and Durfee, 2000) Pradeep M. Pappachan and Edmund H. Durfee. “Interleaved Plan
Coordination and Execution in Dynamic Multi-agent Domains.” (abstract) Proceedings of the
Fourth International Conference on MultiAgent Systems, pages 425-6, July 2000.

(Pappachan and Durfee, 2001) Pradeep M. Pappachan and Edmund H. Durfee. “A satisficing
multiagent plan coordination algorithm for dynamic domains.” (abstract) Proceedings of the ACM
Conference on Autonomous Agents (Agents-01), pages 151-152, June 2001.

6

(Pappachan, 2002) P. M. Pappachan. Coordinating Plan Execution in Dynamic MultiAgent
Environments. PhD Thesis, May 2002.

5 Appendices

The following papers are attached to this report.
(Durfee, 2001) Edmund H. Durfee. “Scaling Up Agent Coordination Strategies.” IEEE Computer

34(7):39-46, July 2001.

This paper summarizes many of the challenges to coordination, and coalesces a number of the
thoughts that arose from discussions among CoABS group members in the first year or two of the
project.

(Durfee, 2002a) Edmund H. Durfee. “Strategies for Discovering Coordination Needs in Multi-Agent
Systems.” The DoD Software Tech News, 5(1):3-8, January 2002.

This paper presents a high-level view of the basic concepts behind this project, intended for the
DoD Software community.

(Clement and Durfee, 1999b) Bradley J. Clement and Edmund H. Durfee. “Theory for Coordinating
Concurrent Hierarchical Planning Agents Using Summary Information.” In Proceedings of the
National Conference on Artificial Intelligence (AAAI-99), pages 495-502, July 1999.

This paper provides details about the plan representation, semantics, and summarization
process.

(Clement and Durfee, 2000b) Bradley J. Clement and Edmund H. Durfee. “Performance of
Coordinating Concurrent Hierarchical Planning Agents Using Summary Information.” In
Proceedings of the 2000 International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2000), pages 202-216, July 2000.

This paper describes and analyzes the coordination process based on summary information of
hierarchical plans.

(Clement et al, 2001b) Bradley J. Clement, Anthony C. Barrett, Gregg R. Rabideau, and Edmund H.
Durfee. “Using Abstraction in Planning and Scheduling.” In Proceedings of the Sixth European
Conference on Planning (ECP-01), pages 145-156, September 2001.

This paper illustrates how a number of the ideas for modeling and deconflicting plans of multiple
agents can be used fruitfully in the single agent case as well.

(Pappachan and Durfee, 2001) Pradeep M. Pappachan and Edmund H. Durfee. “A satisficing
multiagent plan coordination algorithm for dynamic domains.” (abstract) Proceedings of the ACM
Conference on Autonomous Agents (Agents-01), pages 151-152, June 2001.

This paper summarizes techniques for using temporal constraint networks to support more
dynamic, runtime coordination.

(Cox and Durfee, 2003) Jeffrey S. Cox and Edmund H. Durfee. “Discovering and Exploiting Synergy
between Hierarchical Planning Agents.” To appear in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, July 2003.

This paper extends prior techniques to also identify and exploit unexpected cooperative
opportunities (synergies) among independently-planning agents..

7

(Bartold and Durfee, 2003) Thomas Bartold and Edmund H. Durfee. “Limiting Disruption in
Multiagent Replanning.” To appear in Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, July 2003.

This paper describes modifications to the coordination search algorithm to allow it to more
quickly zoom in on coordination solutions that limit disruption to agents compared to prior
commitments they have made.

 (Allsopp et al, 2002) David N. Allsopp, Patrick Beautement, Jeffrey M. Bradshaw, Edmund H. Durfee,
Michael Kirton, Craig A. Knoblock, Niranjan Suri, Austin Tate, and Craig W. Thompson.
“Coalition Agents Experiment: Multiagent Cooperation in International Coalitions.” IEEE
Intelligent Systems, 17(3):26-35, May/June 2002.

This paper summarizes the activities, including the contributions of this project, with respect to
the Coalition Agents Experiment (CoAX) efforts.

8

Appendix A: Challenges to Scaling-Up Agent Coordination Strategies

Edmund H. Durfee

EECS Department
University of Michigan
Ann Arbor, MI 48109

durfee@umich.edu

Introduction
The notion of deploying “intelligent agents” to do peoples’

bidding in environments ranging from marketplaces on the
internet to robotic exploration of Mars has recently received much
attention and speculation. Meanwhile, exactly what an “agent” is
and in what senses a computational agent can behave
“intelligently” are still undergoing much debate. Rather than
confront such thorny issues head on, this article skirts around
most of them to focus more squarely on just one of the central
concerns of intelligent agency: coordination.

With few exceptions, if an agent is dispatched to an
environment, the odds are that it will share the environment with
other agents. Even some proposed strategies for robotic
exploration of the planets typically involve sending a team of
robots! Thus, a fundamental capability needed by an agent is the
ability to decide on its own actions in the context of the activities
of other agents around it. This is what we will mean when we
refer to coordination. Note that this does not mean that
coordination must imply cooperation: an effective competitor will
coordinate its decisions to work to its advantage against an
opponent, such as a producer of goods timing a product
promotion to undercut a competitor. It does not even imply
reciprocation: an agent may be coordinating with another who is
unaware of it, such as one automobile driver trying to pass a
second whose mind is entirely elsewhere.

Without coordination, agents can unintentionally conflict, can
waste their efforts and squander resources, and can fail to
accomplish objectives that require collective effort. It is therefore
no wonder that a variety of strategies for coordination among
computational agents have been developed over the years, in an
effort to get “intelligent agents” to interact at least somewhat
“intelligently.”

It does not seem possible to devise a coordination strategy that
always works well under all circumstances; if such a strategy
existed, our human societies could adopt it and replace the myriad
coordination constructs we employ, like corporations,
governments, markets, teams, committees, professional societies,
mailing groups, etc. It seems like whatever strategy we adopt, we
can find situations that stress it to the breaking point. Whenever a
coordination strategy is proposed, therefore, a natural question
that arises is “How does it scale to more stressful situations?”

In an effort to map the space of coordination strategies,
therefore, we need to define at least some of these dimensions in
which they might be asked to “scale,” and then figure out how
well they respond to being stressed along those dimensions. For
example, clearly one of the most measurable scaling dimensions is
simply the number of agents in the system. Yet, sheer numbers
cannot be all there is to it: the coordination strategies employed in
insect colonies seem to scale to large numbers of insects, yet they
do not seem to satisfy all the needs of large human societies (New

York City traffic not withstanding). One of my goals in writing
this article, therefore, is to provoke a dialogue about what it
means for a coordination strategy to “scale up.”

Moreover, as Jennings has suggested, agent-oriented software
engineering shows promise for developing complex, distributed
systems, but requires the component agents to act and interact
flexibly (Jennings 2001). A second goal of this article is therefore
to provide some potentially useful starting points for
characterizing portions of the space of coordination problems, so
as to better understand the capabilities and limitations of
strategies developed to support flexible interaction. Toward this
end, I’ll begin by forming a characterization of the coordination
problem space by looking at properties of the agent population, of
the task-environment the agents inhabit, and of the expectations
about their collective behaviors. I’ll then turn to giving a very
brief survey of a few (of many) coordination strategies and how
they fit into this space. I’ll conclude by pointing out gaps in our
understanding, and suggest opportunities for progress in the field.

Some Dimensions of Coordination Stress
There are more factors that influence how difficult it is to bring

about coordination than can be covered here. Therefore, this
article tries to project the richness of this space while also
simplifying enough to allow a reader to grasp portions the space.
To that end, I’ll limit discussion to three dimensions (so as to
allow depiction on a 2-dimensional page) along each of the major
properties: of the agents, of the task-environment, and of the
solution. It should be noted up front that these dimensions are not
necessarily orthogonal; in some cases relationships between them
are indicated. Nonetheless, treating them as orthogonal can be
useful in characterizing the space of coordination challenges.

Agent Population Properties

We begin with the most obvious properties that will impact

coordination: those of the set of agents that need to coordinate.
Certainly, one of the challenges in scaling any coordination
strategy, as previously mentioned, is handling larger and larger
numbers of agents. Coordination strategies that rely, for example,
on a centralized “coordinator” to direct the interactions of the
other agents can quickly degrade as the coordinator becomes
incapable of processing all of the interactions given increasing
numbers of potentially interacting agents. If each agent can
potentially interact with every other agent, then the number of
pairwise interactions to analyze grows quadratically with the
number of agents. More problematically, since interactions often
must be viewed in terms of larger groups of agents (not just pairs),
the problem can devolve into a problem of exponential size: if
each agent could choose among b actions, each potentially having
a different impact on other agents, then the space of all possible

9

action combinations will be bn, for n agents. Even if each of the n
agents participated in the coordination search, rather than
depending on a centralized coordinator, an n-fold speedup of a
problem that is exponential in n doesn’t help much.

A second dimension that often poses challenges in
coordination is what is broadly labeled as “heterogeneity.” Agents
within a population can be different from each other in many
possible ways. For example, due to occupying different places in
the environment, they might know different things about the
current state of the world. If they know different things about the
way the world works, then we might say they have heterogeneous
expertise. They could have differing abilities to sense the world or
change the world. Especially in the case of competitors, they
could have different preferences for how the world should be.
They could even have different communication languages,
ontologies, or internal architectures. Whether a coordination
strategy scales to increasingly heterogeneous populations depends
on the degree it expects agents to in principle be able to
communicate with, share their abilities with, and basically agree
with each other.

Finally, the third dimension of agent properties we will
consider here is what I term “complexity.” While this could mean
many things, I’ll focus on it as referring to how hard it is to
predict what an agent will do because of inherent versatility on
the part of an agent. One of the features that arguably makes
something an “intelligent” agent is that it is capable of flexibly
deciding for itself which goals to pursue at a given time and how
to pursue them. Agents that are not complex, under this
characterization, are those that can be seen as single-mindedly
doing a specialized task. In general, coordinating with such agents
is easier (they are much more predictable) than coordinating with
agents that could be doing any of a number of things. Couple this
with the possibility of overlaps among agents’ spheres of interest
and ability, and this can put enormous stress on any coordination
strategy that that wants to assume unambiguous matches between
tasks or roles in the system and the agents to do them.

Obviously, scaling along combinations of these dimensions can
pose even greater challenges. Handling complex agents is much
harder, for example, if they are complex in different
(heterogeneous) ways, but easier if there aren’t very many of
them. Coordination strategies will tend to therefore make
assumptions about which dimensions are likely to be stressed for
the application domain of interest.

Task-Environment Properties
The environment in which agents operate, and the tasks they

are expected to accomplish within the environment, are another
major consideration in developing or choosing a coordination
strategy. Real task-environments often introduce complications
that blur the understanding of a coordination strategy: for
example, in task-environments that require substantial domain
expertise, it can be difficult to compare alternative coordination
strategies because the differences in performance might be due to
the quality of the knowledge given the individuals rather than to
the efficacy of the coordination strategy. For this reason,
researchers often employ abstract, idealized versions of task-
environments such as pursuit problems, transport problems, the
Prisoners’ Dilemma, and distributed sensor networks (e.g., see
(Weiss, 1999) and some of the sidebars associated with this
article). Even with abstract task-environments, the possible
dimensions for scaling the difficulty of coordination are
numerous; again, only three are given here of the many
possibilities.

The first dimension we will consider is the degree to which the
environment, or the task, leads to interactions among agents that
materially impact the agents. Since coordination is all about
exerting some control over interactions, a greater degree of
interaction implies more need to coordinate. Or, viewed the other
way, agents that do not interact need not coordinate. Thinking
slightly more concretely, suppose that an interaction involves
some “issue” that involves more than one agent. The issue could
be about who gets to use a resource, or about what the status of
some feature of the world is, or about who is supposed to do what
task, etc. The degree of agent interaction increases as more agents
are concerned with the same issues, and as more issues are of
concern to each agent, so that settling some issues commit agents
to interactions that in turn impact how they should settle other
issues. As the web of dependencies grows, some coordination
strategies can have difficulty scaling.

A second dimension that complicates coordination is the
dynamics of the task-environment. Coping with changing
environments is always difficult; in a multiagent setting, where
different agents might be capable of monitoring only portions of
the environment, and where each might change its mind about
what goals to pursue or what means to use to pursue goals, the
difficulties are compounded. In more static task-environments, the
agents have some hope of converging on coordinated activities

degree of
interaction

dynamics

distributivity

degree of
interaction

dynamics

distributivity

 quantity

heterogeniety

complexity

10

and then carrying them out. But in more dynamic task-
environments, convergence might be impossible: the task-
environment might change faster than the coordination strategy
can keep up. For this reason, coordination strategies that scale to
highly dynamic task-environments are relatively uncommon.

A third dimension, which is related to the first two, as well as
to agent heterogeneity, is what here will be called “distributivity.”
In some task-environments, agents are highly distributed in the
(conceptual) environment and tasks are inherently distributed
among the agents. In other task-environments, the agents are
(conceptually) collected together – such as occupying a common
“yellow pages,” and tasks originate at one point. Distributivity
stresses a coordination strategy because it increases agents’
uncertainty about which agents are currently sharing the task-
environment and what (if anything) each is, or should be, doing.

Again, scaling along combinations of these dimensions is
possible, placing even more substantial demands on a
coordination strategy. For example, distributivity compounds the
difficulties in a dynamic task-environment, because of the
inherent delays in propagating the implications of changes in a
highly distributed setting, but lowering the degree of interaction
can simplify this by localizing the need to propagate to fewer
interested parties.

Solution Properties
To evaluate how well a coordination strategy deals with the

scaling issues that we throw its way, we need to define criteria
that we expect of a solution. One of the dimensions for solution
properties, for example, is the “quality” of the solution, in terms
of how well the interaction is coordinated. The quality might be
measured in terms of efficiency – that is, whether the issues have
been settled in a manner that permits the efficient use of agent
resources and abilities. Higher quality can correspond to closer to
optimal coordination. A less demanding level of quality might
correspond to achieving a satisficing level of coordination. In
some cases, simply avoiding disagreement (conflict) might be
good enough. As illustration, if we were to design a coordination
strategy for an automobile intersection, we might be satisfied if it
prevents crashes, or we might further require that it achieve some
measures such as ensuring no car needs to wait longer than some
upper bound time, or we could insist that it minimize the expected
wait time for all cars. As we demand more, we put greater stress
on the coordination strategy.

A second dimension considers how robust we expect a solution
to be in the face of uncertainty or dynamics in the task-
environment and the agent population. For example, as was
pointed out before, a coordination strategy might have trouble
keeping up with a particularly dynamic task-environment. The
coordination solution might therefore be somewhat out of date. If
we demand that a solution nonetheless be robust, then the
coordination strategy should anticipate, either implicitly or
explicitly, the range of conditions under which the solution it
provides will be followed, and not simply the single expected
situation. Given that some task-environments might be such that a
minor deviation from expectations can lead to severe
consequences, finding assured robust solutions can, in some
cases, be imperative.

Finally, a third dimension concentrates on the cost of the
coordination strategy. A solution to the problem of how to
coordinate should account for the costs of doing the coordination.
These costs could include the amount of computation required,
communication overhead, time spent, and so on. For example, if
communication is costly and time-consuming, a coordination
strategy might have to reduce its demands for information
exchange among agents; beyond some point, it will have to make
high-quality coordination decisions lacking information it would

otherwise have expected to have. Therefore, questions can arise
about whether a coordination strategy can scale well to
environments that impose more stringent limits on costs that the
strategy incurs.

As for the previous properties, these three dimensions can
combine in various ways. For example, one way of improving
robustness of a coordination solution without sacrificing quality is
to continually monitor and update the solution in response to
changes, but this in turn would require that minimizing costs and
delays is not a significant objective.

Characterizing Coordination Strategies
At this point, I’ve identified three major types of properties

(agent population, task-environment, and solution), and for each
I’ve described three (out of many possible) dimensions in which
the property could be scaled to make coordination harder. If we
were to qualitatively consider “low” and “high” values along each
of the dimensions, we’d have eight possible points to consider for
each property, leading to 83 combinations across the three
properties. It would be tempting to now look at each of these 512
combinations in turn, and consider which coordination strategies
make sense for each.

The truth is, however, that even if this magazine had enough
room, and you the reader had enough patience, there isn’t
sufficient understanding of the entire space of coordination
strategies that have (or could have) computational embodiments
to fill all of these in. Instead, what follows summarizes just a
handful of coordination strategies, highlighting where they fall
within this space and the kinds of scaling for which they are
particularly well suited. The selection of these strategies should
not be viewed as an endorsement that the strategies given are
superior to others not given, but rather is based on giving some
representative examples across the space.

More Agents
To some people, “scaling up” is equated to being able to

handle more agents, and (almost always) handling more agents is
harder than handling fewer. Trying to get a large population of
complicated, self-interested, and interacting agents to somehow
behave efficiently and robustly in a dynamic environment is a tall

quality /
efficiency

overhead
limitations

robustness

quality /
efficiency

overhead
limitations

robustness

11

order. In fact, typically something has to give: usually,
coordination strategies that scale well to large numbers of agents
do not deal with many of these other confounding dimensions.

For example, cellular automata often deal with large numbers
of entities that typically use rules to react in simple ways to their
very local environments, such as “deactivating” when too few
neighbors are active, or “activating” when enough neighbors are
active. Patterns of activity can emerge in the population through
these very simple local changes. Physics-based models of large
computational ecosystems of agents can even lead to designs of
metamorphic robots made up many small pieces that shift and
flow to adapt to the environment (Bojinov, 2001). Similarly,
systems based on insect metaphors assume that each agent is a
relatively simple automaton, and that emergent properties of
interest arise due to their local interactions (Ferber 1999). These
strategies assume little complexity or, often, heterogeneity in the
agent population, focus on very limited (local) kinds of
interactions, and are satisfied with emergent, statistical system
performance, rather than worrying about each agent being
efficiently used or making optimal choices.

More generally, successfully scaling up to large numbers of
agents generally requires that each agent only needs to interact
with a constant (or slowly growing) number of other agents, and
that who needs to interact with whom is preordained based on
agents’ features such as their physical locations or their
tasks/roles. Thus, large numbers of mobile agents can be
dispersed for information gathering tasks that can be pursued
independently, interacting only indirectly due to contention for
bandwidth or server cycles (Gray, 2001). Similarly, large-scale
coalition/congregation formation can be viewed as an emergent
process involving growing groups incrementally as agents (and
agent groups) encounter each other and discover advantages of
banding together (Lerman, 2000; Brooks, 2000).

More Heterogeneity
In the case of scaling up to large agent populations, agent

heterogeneity can sometimes help, if agents that are different from
each other need not interact. This serves to once again restrict the
number of others about which an agent must be aware. More
typically, however, heterogeneity is welcomed into a system
because it increases the system-wide capabilities, whereby agents
with complementary attributes combine their efforts toward
objectives beyond what they can individually achieve. Once the
agent population is no longer homogeneous, therefore, it becomes
important for agents to be able to understand and often describe
what they can do, and to find others with whom to work.
Coordination strategies that do not support the ability of agents to
describe themselves and to find each other, such as by having
implicit acquaintanceships among agents “hardwired,” have
difficulty scaling along the heterogeneity dimension.

A mainstay coordination strategy for handling heterogeneity
has been the Contract Net protocol (Smith 1980) and its
descendents, whereby agents dynamically assign tasks to others
who are available and capable of doing the tasks. In its simplest
form, the protocol allows an agent with a task that it needs done
to broadcast an announcement of the task, along with criteria by
which each of the other agents can decide whether it is eligible to
take on the task and, if so, what information to supply in a bid for
the task. The agent with the task can choose from among the
responses to make an assignment.

The Contract Net protocol scales well to an open system of
heterogeneous agents, but as the number of agents increases, the
broadcast communication requirements can be problematic. A
response to this is to maintain a more centralized registry of
agents and their capabilities, which can be used flexibly to
discover promising matches between agents with tasks to do and

agents that can do them. Strategies that support agent registration
and matchmaking (for example, (Paolucci, 2000) or
www.sun.com/jini) can allow agents to find each other by
describing the kinds of services that they need or provide. More
generally, formalisms for communicative acts, such as FIPA
(www.fipa.org), can permit a broad array of conversation policies
in support of flexible agent interactions among heterogeneous
agents. Many of these concepts are being brought together in
more comprehensive frameworks for supporting heterogeneous
agent-based systems, such as DARPA’s Grid
(coabs.globalinfotek.com).

More Complexity
Heterogeneity tends to emphasize the challenges that accrue

when “specialist” agents need to identify each other and team to
provide broader services. Additional complications arise when
agents are individually more complex, typically meaning that they
are each more versatile, yet not identically so. Now, each agent
must decide which of the possible roles that it could play it should
play, and must reason about other agents in terms of the
alternative activities they might be engaged in, rather than the
specific activity that a “specialist” could be assumed to pursue.

Scaling up to more complex agents means that teaming
involves not only finding an available agent with appropriate
capabilities, but also selecting from among such agents so as to
pick the one whose other talents are least in demand by other
teams. Thus, interactions among agents are not localized within
smaller teams, but rather the “partial substitutability” of agents for
each other leads to complex chains of dependencies: how some
teams are formed can color which other teams will be desirable.
This means that agents must be increasingly aware of the broader
needs of the agent network.

Similarly, even when agents do not need to team up, but merely
must co-exist and stay out of each others’ way, the increased
versatility of each agent makes anticipating what others will be
doing much more difficult. Being prepared for anything that
another could choose to do might be impossible, so strategies for
increasing awareness about other agents’ planned activities
becomes paramount. Strategies can include using statistics of
others’ previous behaviors, using observations of them to infer
their current plans, or using communication to convey information
that permits agents to adequately model each others’ intentions.

As an example of the latter, the process by which agents that
can accomplish their objectives in several different ways can
converge on mutually compatible plans can be viewed as a
distributed constraint satisfaction process. This process involves
propagating tentative plan choices among agents and, when
inconsistencies are detected among the choices of some subset of
agents, systematic backtracking is performed by some of the
agents. Increased efficiency in this process can stem from
techniques that allow parallel asynchronous exploration of the
space, and that can dynamically decide which agents should be
asked to try alternatives based on measures of which constraints
are proving most difficult to satisfy (Weiss, 1999, chapter 4).

Higher Degree of Interaction
As was previously stated, the need for coordination arises from

agent interactions. As the number and complexity of agent
interactions grow, coordination becomes intractable. Therefore, it
isn’t surprising that on effective means for addressing
coordination is to reduce, or if possible eliminate, interactions. As
already pointed out, when agents only have to worry about
interactions with a small number of local “neighbors,” then
scaling to large numbers of agents is much easier. So strategies

12

for localizing interactions can obviate the need for more
complicated coordination strategies.

One often-used technique for controlling the degree of
interaction is to impose a (relatively static) organizational
structure on agents. Each agent is given a role to play in the
organization, including its own sphere of control and knowledge
of agents playing related roles. Giving each agent the resources it
needs to fulfill its role eliminates the need for agents to negotiate
over resources, and giving each agent knowledge of the roles of
other agents dictates who needs to communicate with whom and
about what. An appropriate organizational structure among agents
can thus simplify coordination, and permit larger, more complex
agent systems to succeed in more challenging task domains. The
challenge, of course, is in designing organizations for agents, or
having agents design their own organizations, such that the
organizations match the agent population and the needs of the
task-environment (Prietula, 1998).

Sometimes, however, multiagent tasks cannot be divided into
nearly-independent pieces; there are some tasks that absolutely
require tight interactions among agents. In the literature, examples
of such tasks include the “pursuit” task where predators need to
surround a prey (see sidebar), and tasks involving team activities
such as combat flight operations (Tambe, 2000). For such
applications, interactions are not a side-effect of individuals
acting in a shared world, but rather are the purpose of the
individuals’ actions in the first place. Therefore, an emphasis on
agent teams is appropriate, leading to frameworks where a system
designer explicitly describes recipes for team behavior, with
particular attention to which team members should interact, when,
and how (Grosz, 1996; Tambe, 2000).

When agents must formulate plans that fit together, but for
which no existing recipes are available, techniques for reasoning
about how actions of agents can enable or facilitate, or can hinder
or even disable, actions of others, are needed (Decker, 1995).
Merging the plans of agents, formulated individually, so as to
permit the agents to successfully accomplish their activities
without interfering with each other is also a useful technique
(Ephrati, 1995; Clement, 1999).

More Dynamic
Whether viewed as a population of individuals or as a team, a

multiagent system that operates in a dynamic task-environment
must contend with changes in plans, goals, and conditions in the
midst of execution. Tasks that previously could be carried out
independently might now interact, such as when a resource
becomes unusable forcing contention for other remaining
resources. Agreements that have been forged between team
members might have to be revisited as some team members
change their priorities or recognize that their individual
intentions, or those of the team as a whole, are no longer relevant
in the new context they find themselves in.

Jennings (Jennings, 1992) has characterized these issues as the
challenge in having conventions about what agents should do
when they begin to question their commitments due to task-
environmental dynamics. A variety of conventions can be
specified, including the convention that seeks to ignore dynamics
entirely by insisting that agents fulfill their commitments
regardless. Alternatives include allowing agents to reneg on
commitments if they pay some penalty, or permitting agents to
abandon obsolete commitments provided that they notify team
members (and thus potentially stimulate to formation of different
commitments).

In fact, dynamic task-environments can suggest that agents
should never view their (or others’) plans as being anything more
than tentative. Agents could unilaterally change their minds about
their plans and begin acting on new plans before reaching

agreement across the team. This has the potential of leading to
inefficient collective activities due to information delays and to
chain reactions (even race conditions) among changes. However,
under some limiting assumptions about how and when agents can
make unilateral changes, iterative coordination and execution
techniques (Weiss, 1999, chapter 3) can lead to flexible
coordinated behavior in dynamic task-environments.

More Distributed
Even when the interactions between agents requiring

coordination are few and not undergoing dynamic changes, a task-
environment can stress agents if the interactions requiring
coordination are hard to anticipate. In particular, if agents are
acting based on privately-held information about goals and
methods, then it might take substantial effort to discover who is
going to be interacting with whom.

One response to this is to anticipate all of the possible actions
that agents might take, across all of the goals and plans that they
might adopt, and to impose restrictions on what actions they can
take under what conditions so as to prohibit undesirable
interactions. Such “social laws” ensure that a law-abiding agent,
acting in a population of other law-abiding agents, need never
worry about undesirable interactions, no matter what goals and
plans are being adopted (Shoham, 1994). In human terms, this is
like saying that as long as all drivers obey traffic laws, then they
can each eventually get to their desired destinations, wherever
those are, without collision.

A second response is to support the process by which agents
whose individual actions might interact can efficiently find each
other. When interactions are over the exchange of goods, for
example, providing agents with loci (auctions) for finding each
other helps. Creating agents to represent resources over which
agents might contend similarly allows interacting resource
demands to be identified. Or agents might discover through
experience others with whom they tend to interact, and form
persistent aggregations (Brooks, 2000; Lerman, 2000).

Without identifiable contexts for aggregating, however, it could
be that agents must somehow test for possible interactions against
all other agents. This could be done through a centralized
“coordinator” who collects together information on all agents, and
using its global awareness can inform agents of the potential
interactions to watch out for. In such a case, the coordinator
should accept only as much information as is absolutely necessary
to recognize interactions (Clement, 1999). Alternatively, agents
could broadcast information to all others, so that each has
sufficient awareness of the global picture. Through iterative
exchanges, the overall system can cooperatively achieve its
objectives.

Greater Optimality/Efficiency
Coordination that is optimal is generally desirable, though less

often feasible. As was mentioned earlier, coordination can
sometimes be viewed as a search through the exponential number
of combinations of agents’ alternative actions to find a “good
enough” combination. Whereas sometimes it is enough to find a
combination that does well enough (avoids conflicts among
agents, or ensures eventually achieving goals), for some
applications the optimal solution is sought. Optimality generally
requires substantial computation (and sometimes communication)
overhead; especially in dynamic task-environments (where
optimal can become obsolete before it is carried out) or those with
many agents and/or complex interactions, a satisficing or locally-
optimal solution is often acceptable.

Nonetheless, for some restricted types of coordinated decisions,
optimal might be within reach. An example commanding much

13

attention in recent years has been in coordinating resource
allocation decisions based on market-oriented approaches (Weiss,
1999, chapter 5). Through iterated rounds of bidding in an
auction, agents can balance supply and demand to allocate
resources to maximize their efficient use, under some
assumptions. Active research is ongoing to extend these
coordination strategies to “scale” them along other dimensions:
not only to handle larger numbers of agents, but to handle higher
degrees of interaction (using combinatorial auctions to allocate
resources whose values are dependent on how they are acquired in
combinations) and greater dynamics (including strategies for
clearing auctions without waiting for all prices to settle)
(Fujishima, 1999).

Other methods for distributed rational decision making (Weiss,
1999, chapter 5) include decision theoretic methods based on
multiagent extensions of Markov Decision Processes (Boutilier,
1999). This type of method can find an optimal policy for a
multiagent system, based on a particular coordination protocol
that can be employed at runtime (for example, to increase agents’
awareness of the global situation). When each agent follows its
portion of the optimal policy, the expected utility of the
multiagent system is maximized.

More Robustness
An optimal coordination solution might break when the world

deviates from the coordination strategy’s assumptions. Whether a
coordination strategy can scale to domains where robust
performance is difficult but necessary can thus become important.

One means of increasing the robustness of a coordination
solution is to build a solution that contains sufficient flexibility
that agents can work around new circumstances within their
original coordination agreement. For example, building slack
time into scheduled activities, or avoiding committing to details of
exactly what will be done and when, can leave each agent with
more room to maneuver when the world doesn’t proceed
according to plan. Typically, more robust coordination decisions
are less efficient because they reserve resources for “fall-back”
contingencies and therefore might suboptimally divide up tasks
among agents for a particular situation. Coordination through
organizational structures typically has this feature (Weiss, 1999,
chapter 7; Prietula, 1998, chapter 3).

Alternatively, a coordination strategy might expect to monitor
the execution of its solution, and repair that solution as needed.
These ideas are extensions of single-agent plan monitoring and
repair/replan techniques. Teamwork models, with conventions as
to how to respond when continued pursuit of joint commitments
is senseless, are examples of this (Kumar, 2000). Moreover, in
some cases it might be possible to develop generic monitoring and
recovery methods for the coordination processes themselves
(Dellarocas, 2000).

Lower Overheads
In application domains where communication channels are

limited and where the computational resources available for
coordination are minimal demand that attention be paid to
reducing the overhead of coordination strategies. As
communication bandwidth becomes more limited, for example,
coordination decisions must be made without exchanging enough
information to maintain a level of global awareness that many
strategies might expect.

Techniques that involve the iterative exchange of increasingly
detailed information about agents’ plans and intentions provide
one means of permitting time-constrained coordination, where the
communication and computation overheads can be limited at the
expense of the quality of the coordination solution (Clement,

1999). Alternatively, agents can choose to continue with outdated
but still sufficient coordination decisions to avoid a chain reaction
of coordination activities. When communication is at a premium,
or might even be impossible, techniques such as using
observations to model others, or using reasoning to converge on
coordinated decisions (e.g., focal points) can pay dividends
(Fenster, 1995).

Sometimes, the availability of coordination resources can be
sporadic. Under some coordination regimes, agents can take
advantage of opportunities where such resources are plentiful to
build more complete models of the roles and contingent plans of
each other, that can then be exploited when the agents have
moved into situations where further communication and
computation to coordinate is unsafe or infeasible (Durfee, 1999;
Stone 1999).

Open Challenges
I was initially inspired to write this piece because of what I saw

as a trend toward identifying scaling to large numbers of agents as
the most important challenge that can be posed to a multi-agent
system. My own experience was that it was easy to develop multi-
agent systems consisting of hundreds or thousands of agents, so
long as those agents could merrily go about their business with no
concern about the activities of others. On the other hand, it could
be a tremendous challenge to develop a working system made up
of only a handful of agents if the degree to which their activities
needed to be dovetailed – and the penalty for failing to get the
dovetailing exactly right – were both very high. The takehome
messages of this article could thus be viewed as: (1) there are
many ways to stress a coordination strategy, each of which pose
research challenges and opportunities, and (2) there are already a
variety of promising ideas out there for designing coordination
strategies, that can be computationally realized, for getting agents
to work well together under a broad range of circumstances.

The preceding whirlwind tour of some of the coordination
strategies, and the kinds of stresses in agent population, task-
environment, and solution criteria for which they are suited,
should be viewed only as an introduction to the rich body of work
that has gone into addressing the challenges of coordination in the
many domains where it is needed. Many coordination strategies,
and variations of coordination strategies, have been left out of the
preceding. Interested readers should refer to recent books on the
subject of multiagent systems (for example, (Weiss, 1999; Ferber,
1999)) and to journals such as Autonomous Agents and Multi-
Agent Systems (published by Kluwer) and proceedings of
conferences such as the Autonomous Agents conference and the
International Conference on Multi-Agent Systems.

I should also emphasize that, in the preceding survey, I was not
intending that each coordination strategy be pigeonholed as only
addressing issues along one of the dimensions. In fact, most can
be scaled along multiple dimensions, but each has its limits. The
challenge facing researchers in the field is to develop a better
(preferably quantifiable) understanding of exactly how far
different coordination strategies can scale along the dimensions
laid out, as well as along dimensions that are still being identified
as being germane to the application of intelligent agent systems to
increasingly challenging problems.

Acknowledgments
As part of DARPA’s Control of Agent-Based Systems

(CoABS), I have worked with several other researchers to
understand the relative strengths and weaknesses of various
coordination approaches. This article consolidates my take on

14

many of those thoughts. While these colleagues should be held
blameless for any oversimplifications and misrepresentations in
this article, I’d like to acknowledge their contributions to my
thinking along these lines. They include Craig Boutilier, Jim
Hendler, Mike Huhns, David Kotz, James Lawton, Onn Shehory,
Katia Sycara, Milind Tambe, and Sankar Virdhagriswaran.
Milind Tambe also provided valuable feedback on an earlier
version of this article. This work was supported, in part, by
DARPA through Rome Labs (F30602-98-2-0142).

References
Bojinov, H., A. Casal, and T. Hogg. “Multiagent Control of

Self-reconfigurable Robots.” Proceedings of the Fourth
International Conference on MultiAgent Systems (ICMAS-2000),
pages 143-150, IEEE Computer Society Press, July 2000.

Boutilier, C. “Multiagent Systems: Challenges and

opportunities for decision-theoretic planning.” AI Magazine
20(4):35-43, Winter 1999.

Brooks, C. H., E. H. Durfee, and A. Armstrong. “An

Introduction to Congregating in Multiagent Systems.”
Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS-2000), pages 79-86, IEEE Computer
Society Press, July 2000.

Clement, B. J. and E. H. Durfee, 1999. “Top-Down Search for

Coordinating the Hierarchical Plans of Multiple Agents.” In
Proceedings of the Third Conference on Autonomous Agents,
pages 252-259, May.

Decker, K. S. “TÆMS: A framework for analysis and design of

coordination mechanisms.” In G. O'Hare and N. Jennings, editors,
Foundations of Distributed Artificial Intelligence, Chapter 16.
Wiley Inter-Science, 1995.

Dellarocas, C. and M. Klein. “An experimental evaluation of

domain-independent fault handling services in open multi-agent
systems.” Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS-2000), pages 39-46, IEEE Computer
Society Press, July 2000.

Durfee, E. H. “Distributed continual planning for unmanned
ground vehicle teams.” AI Magazine 20(4):55-61, Winter 1999.

Ephrati, E., M. E. Pollack, and J. S. Rosenschein. “A tractable

heuristic that maximizes global utility through local plan
combination.” In Proceedings of the First International Conf. on
Multi-Agent Systems (ICMAS-95), pages 94-101, June 1995.

Ferber, J. Multi-Agent Systems: An Introduction to Distributed

Artificial Intelligence. Addison-Wesley, Harlow England, 1999.

Fujishima, Y., Leyton-Brown, K., and Shoham, Y. “Taming

the computational complexity of combinatorial auctions: Optimal
and approximate approaches.” In Sixteenth International Joing
Conference on Artificial Intelligence (IJCAI-99). 1999.

 Gray, R. S., D. Kotz, R. A. Peterson, Jr., P. Gerken, M.
Hofmann, D. Chacon, G. Hill, and N. Suri. “Mobile-Agent versus
Client/Server Performance: Scalability in an Information-
Retrieval Task.” Technical Report TR2001-386, Dept. of
Computer Science, Dartmouth College, January 2001.

Grosz, B. J. and S. Kraus. “Collaborative Plans for Complex
Group Action.” Artificial Intelligence. 86(2), pp. 269-357, 1996.

Jennings, N. R. “Commitments and Conventions: The

foundation of coordination in multi-agent systems.” The
Knowledge Engineering Review, 2(3):223-250, 1993.

Jennings, N. R. “An Agent-based Approach for Building

Complex Software Systems.” Communications of the ACM
44(4):35-41, April 2001.

Kumar, S., P. R. Cohen, and H. J. Levesque. “The adaptive

agent architecture: Achieving fault-tolerance using persistent
broker teams.” Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS-2000), pages 159-
166, IEEE Computer Society Press, July 2000.

Lerman, K. and O. Shehory. “Coalition Formation for Large-

Scale Electronic Markets.” Proceedings of the Fourth
International Conference on MultiAgent Systems (ICMAS-2000),
pages 167-174, IEEE Computer Society Press, July 2000.

Paolucci, M., Z. Niu, K. Sycara, C. Domashnev, S. Owens and

M. van Velsen “Matchmaking to Support Intelligent Agents for
Portfolio Management.” In Proceedings of AAAI2000.

Prietula, M. J., K. M. Carley, and L. Gasser, editors.

Simulating Organizations: Computational Models of Institutions
and Groups. AAAI Press/MIT Press, Menlo Park, CA, 1998.

Shoham, Y. and M. Tennenholtz. “On Social Laws for

Artificial Agent Societies: Off-line design.” Artificial Intelligence
72(1-2):231-252, 1994.

Stone, P. and M. Veloso. “Task Decomposition, Dynamic Role
Assignment, and Low-Bandwidth Communication for Real-Time
Strategic Teamwork.” Artificial Intelligence 100(2), June 1999.

Tambe, M., and W. Zhang. “Towards flexible teamwork in

persistent teams: extended report.” Journal of Autonomous Agents
and Multi-agent Systems 3(2): 159-183, June 2000.

Weiss, G., editor. Multiagent Systems: A modern approach to

distributed artificial intelligence. The MIT Press, Cambridge MA,
1999.

15

Appendix B: Strategies for Discovering Coordination
 Needs in

 MultiAgent Systems

Edmund H. Durfee
Computer Science and Engineering Division

EECS Department
University of Michigan
Ann Arbor, MI 48109

durfee@umich.edu

When multiple computational agents share a task environment, interactions between the
agents generally arise. An agent might make a change to some feature of the
environment that in turn impacts other agents, for example, or might commandeer a non-
sharable resource that another agent desires. When the decisions that an agent makes
might affect what other agents can or should decide to do, agents will typically be better
off if they coordinate their decisions.

Numerous techniques exist for coordinating decisions about potential interactions. These
include appealing to a higher authority agent in an organizational structure, instituting
social laws that avoid dangerous interactions, using computational markets to converge
on allocations, explicitly modeling teamwork concepts, using contracting protocols to
strike bargains, and iteratively exchanging tentative plans until all constraints are
satisfied. There is a rich literature on these and other mechanisms for coordinating
agents; the interested reader can see (Weiss, 1999).

However, each of these mechanisms takes as its starting point that the agents requiring
coordination know, at the outset, either with whom they should coordinate, or what issues
they should coordinate about. As examples, an organizational structure inherently
defines how agents are related to each other, and a computational market corresponds to
some resource or “good” that was somehow known to be contentious.

A central thrust of our research is in pushing back the boundaries of what is assumed
known in a multiagent setting in order to bootstrap the coordination process. That is, we
want to develop techniques by which agents can discover whom they should coordinate
with, or what they should coordinate about, so that the rich variety of coordination
techniques can then be employed. This paper briefly summarizes some of our progress,
results, and plans on this front.

Unintended Conflicts
An important case in which agents need to discover coordination needs is the following.
Agents occupy an open, dynamic environment, and each agent has its own independent
objectives. Yet, in pursuing its objective, an agent can unintentionally interfere with
others, sometimes catastrophically. Therefore, it is important for each agent to discover
whether something it is doing needs to be coordinated with others.

16

We have been studying coalition operations as an example application domain where this
kind of problem arises. In a coalition, objectives and responsibilities are distributed
among multiple functional teams, where operational choices by one team can
infrequently and unintentionally affect another team. The repercussions of unintended
interactions can range from merely delaying the accomplishment of objectives (such as
waiting for assets that were unexpectedly borrowed by someone else) to more
catastrophic outcomes (such as so-called friendly fire). We have been developing
computational techniques in which each team is represented by a computational agent,
and these agents predict the unintended interactions and resolve them before they occur.
The resulting coordinated plans of the agents should be efficient (e.g., agents should not
have to wait unnecessarily for others), flexible (e.g., agents should retain room in their
plans to improvise around changing local circumstances), and realizable (e.g., agents
should not have to message each other at runtime in a manner that outstrips
communication capabilities).

Conceptually, our techniques begin by assuming that each agent can represent its plans in
a hierarchical task network (HTN), capturing the possible decompositions of abstract plan
steps into more detailed plans. As a simple example, consider the case of agent A
moving through a grid world to reach a destination (Figure 1). The HTN for this agent is
in Figure 2. At the most abstract level (blue arrow in Figure 1, blue node in the HTN), the
plan is simply to go from the initial location to the destination. This is in turn composed
of the three sequential steps of going to the door, through the door, and beyond the door
(green, purple, and aqua arrows/nodes respectively). The ordering constraints are
captured in the HTN (Figure 2) by the arrows labeled “B” for “before.” For both the first
and last step at this level, there are two ways of accomplishing the step. For example, for
getting to the door, the red route or the orange route could be chosen. Each of these in
turn can be decomposed into a sequence of two movements; red, for example, is to the
right and then down).

A DA 0

1

2

0 1 2 3 4

Figure 1: Example Movement Task

17

An advantage of using the hierarchical representation is that each agent has,
simultaneously, a model of itself at multiple levels of detail. In an open environment
populated by numerous agents, being able to communicate about and exchange abstract
information can enable agents to quickly determine which (small) subset of agents in the
world they actually could potentially interact with (Figure 3a to Figure 3b). In the simple
movement task example, for instance, the grid might be much larger, and the subset of
agents is small whose planned movements, even abstractly defined, indicate a potential
collision with agent A. For those agents, it might even be possible to impose constraints
at the abstract level to ensure against unintended collisions, such as sequentializing the
overall plans so that only one of the affected agents moves at a time. Or, for the
remaining agents, additional details of the HTNs can be exchanged. As a result, agents
that were potentially interacting might be determined to not interact at all, reducing the
number of agents further and introducing constraints between only substeps of plans
leaving agents to do their other substeps as they wish (Figure 3c). Finally, further
investigation might indicate that the potential conflict can be isolated to a particular
choice that an agent might make; a commitment by the agent to forbid that choice leaves
the plans coordinated without imposing any ordering constraints between the agents’
plans at all (Figure 3d).

B B

B B B B B

B B

B B B B B
Figure 2: Example Hierarchical Task Network (HTN)

18

Figure 3: Top-Down Coordination Protocol Example

a.

b.

c.

d.

19

This example illustrates that, by working from the top down, agents can more efficiently
identify and zoom in on the problematic interactions. By digging down deeply, they
might be able to impose commitments (on relative timing or on choices of ways in which
they will accomplish their tasks) that lead to very crisp coordination. However, in
dynamic environments, sometimes it is better to impose constraints at more abstract
levels: while this might require more sequential operation than desired, it also allows
agents to avoid commitments to details that they might regret. As is intuitive in human
coordination, each agent retains more flexibility for improvising when it makes more
vague commitments to others. Moreover, digging down deeply requires more rounds of
communication and analysis, so coordinating at abstract levels incurs less overhead.
Among our ongoing research activities are developing methods for quantitatively
evaluating tradeoffs between coordination “crispness”, overhead, and flexibility.

We have developed techniques for formulating summaries in HTNs that permit the kind
of top-down reasoning that we have just described, and have shown that such techniques
can indeed much more efficiently coordinate agents (Clement and Durfee, 1999). These
techniques have been shown to be sound and complete. At the cost of completeness, we
have also developed a version of these techniques that can be used on-line (Pappachan
and Durfee, 2001). The on-line techniques allow agents to postpone decisions about
which of the alternative ways they will use to accomplish a task until that task is the next
to be done. This in turn provides increased flexibility to the agents, leading to more
reliable agent operation in dynamic domains than methods that require agents to make
selections before execution begins.

Dealing With Centralization

The techniques just outlined have the feature that, to ensure that all possible interactions
are detected and dealt with, some agent or agents need to compare all agents’ most
abstract plans. This implies that, at some point, information about all agents needs to be
known in one place, which is antithetical to decentralized multiagent systems. Certainly,
our current implementations rely on a central coordinator to discover potential agent
interactions, although in principle once these are discovered the job of working with the
agents to resolve the interactions can be delegated to multiple sub-agents, where each
handles a different partition of the agent population.

How can we get around the need for centralization? Well, first of all, it should be noted
that our use of centralization for detecting interactions does not imply that authority, or
even knowledge about agent preferences, is centralized. In our model, the coordination
process merely detects potential interactions and finds possible resolutions (more detailed
resolutions as time goes on). To agree upon which resolution to use, the affected agents
can employ any of the various coordination mechanisms mentioned at the beginning of
this paper. That is, these are appropriate once the agents know about the interactions and
who is involved.

In turn, this suggests that one way of eliminating the centralization of the detection
process requires that agents are initialized with some knowledge. For example, the

20

organizational structure in which they reside might inherently partition the agents, such
that coordination can be carried out in parallel in different partitions. Or agents might be
initialized with knowledge of the possible actions of other agents that can be used to
anticipate interactions. For example, our research is using these ideas to coordinate
resource-limited agents in a multiagent world. In the simplest sense, a resource-limited
agent needs to decide how to allocate its limited capabilities in order to meet its
performance goals across the scope of worlds that it might encounter. By employing
knowledge about what actions other agents might take in particular situations, it can
better predict what worlds it might encounter, and can even use its uncertainty to focus
communication with those other agents to ask them which of the alternative actions they
plan to take for a critical situation. Such communications could also permit agents to
avoid taking redundant actions in situations where they would react the same way. In the
long run, agents can even engage in negotiation to convince others to favorably change
how they react to particular circumstances.

Congregating Over Mutual Concerns

An alternative means of determining coordination needs, instead of centralizing
information or inherently distributing key coordination knowledge, is to instead permit
coordination needs to be discovered through interactions. While this would be
inappropriate in applications where uncoordinated interactions could be catastrophic
(such as when friendly fire arises in coalition operations), there are many applications
where the consequences of poor coordination are not so dire.

Consider, for example, interactions among groups of people with similar interests, such
as in an electronic newsgroup. A well-defined group permits an efficient exchange of
relevant information among interested people, with a minimum of tangential
communications that waste readers’ time. A poorly-defined group, on the other hand,
wastes readers time and might lose readership quickly, but with no significant lasting
effects on the participants. In this case, then, it is possible that people might congregate
around newsgroup topics in an emergent way, through experimentation and exploration
in the space, until they converge on relatively stable newsgroups that lead to productive
interactions.

We have been conducting research in understanding the dynamic processes of
congregating in open environments (Brooks and Durfee, 2000). In our model, agents
move among congregations until they find places where they are satisfied, where
satisfaction depends on the other members of their congregation. Since these other
agents are also moving around to find satisfactory congregations, agents are engaged in
non-stationary (“moving target”) search. In general, convergence in such systems is slow
if it happens at all, and we have been studying mechanisms that enhance convergence
such as: varying the movement costs of agents so that some “hold still” while others
move; allowing like-minded agents to move as a coalition; giving agents the ability to
remember and return to previously-experienced congregations; and allowing agents in a
congregation to summarize their common interests and advertise this information to other
agents.

21

As a specific form of congregating, we have been particularly interested in information
economies, where competing producers of information goods must bundle and price their
goods so as to attract (a subset of) the information consumers. Where a producer ends up
in the product-and-price space is influenced not only by the consumer preferences, but
also by the positioning decisions of other producers. Among our research results are that
we have defined some of the conditions that promote the discovery of niche markets in
the information economy, such that producers engage in stable relationships with an
interested subset of the consumer population, and avoid mutually-harmful interactions
(price wars) with other producers (Brooks, Durfee, and Das, 2000). As suggested above,
the price paid for this decentralized technique for discovering which agents should
coordinate (interact) with each other is that, on the way to the ultimate mutually-
profitable result, producers will sometimes compete with each other and do poorly
temporarily as a result.

Summary and Future Directions

In this paper, we have claimed that, while powerful techniques exist for coordinating
agents that already know whom or about what to coordinate, there are still many issues
that need to be explored in designing efficient mechanisms by which to determine what
needs to be coordinated in the first place. We briefly described some mechanisms that we
are exploring for this purpose. One of these involves agents iteratively exchanging plan
information at increasingly detailed levels to isolate potential interactions and impose
effective commitments to resolve conflicts. Another, on the other hand, permits
suboptimal interactions to occur, and allows the agent population to self-organize, over
time, into congregations that emphasize beneficial interactions.

There are many directions in which we are, or are considering, extending these research
activities. We need to develop heuristic means by which agents can decide on the level of
detail at which they should coordinate, and metrics for comparing alternative
coordination decisions in uncertain environments. We need to extend the soundness and
completeness proofs, as well as the complexity analyses, of the techniques as we continue
to augment and improve them. Coordination commitments that are derived between
agents should be generalized and remembered to form the core of a suite of team plans,
and the processes by which coordination needs are discovered should apply not only
between agents but also between agent teams. Finally, these techniques need to be
implemented and evaluated in the context of challenging applications, such as in the
domain of coordinating coalition operations.

Acknowledgements
The ideas and results described in this paper were developed with numerous
collaborators. In particular, I’d like to thank my students, including Brad Clement,
Pradeep Pappachan, Chris Brooks, Haksun Li, and Jeff Cox. The work was supported, in
part, by DARPA under the Control of Agent-Based Systems Initiative (F30602-98-2-
0142), by DARPA under the Automated Negotiating Teams Initiative (subcontract to
Honeywell on F30602-00-C-0017), and by NSF grant IIS-9872057.

22

References
Christopher H. Brooks, Edmund H. Durfee and Aaron Armstrong. “An Introduction to
Congregating in Multiagent Systems.” In Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS-2000), pages 79-86, July 2000.

Christopher H. Brooks, Edmund H. Durfee and Rajarshi Das. “Price Wars and Niche
Discovery in an Information Economy.” In Proceedings of the ACM Conference on
Electronic Commerce 2000 (EC-00), October 2000.

Bradley J. Clement and Edmund H. Durfee. “Theory for Coordinating Concurrent
Hierarchical Planning Agents Using Summary Information.” In Proceedings of the
National Conference on Artificial Intelligence (AAAI-99), pages 495-502, July 1999.

Pradeep M. Pappachan and Edmund H. Durfee. “A satisficing multiagent plan
coordination algorithm for dynamic domains.” (abstract) Proceedings of the ACM
Conference on Autonomous Agents (Agents-01), June 2001.

Gerhard Weiss (editor). Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press: Cambridge Massachusetts, 1999.

Author Information
Edmund H. Durfee is currently a Professor of Electrical Engineering and Computer
Science, and of Information, at the University of Michigan. He received a Ph.D. degree
in Computer Science from the University of Massachusetts in 1987 and joined the EECS
Department at the University of Michigan in 1988. His area of teaching and research is
artificial intelligence, multi-agent systems, and real-time intelligent control. To date he
has published over 100 journal and conference papers, and has served in various
capacities such as the program chair (1998) and conference chair (2000) for the
International Conference on MultiAgent Systems. He has received a Presidential Young
Investigator Award from the NSF (1991), is a senior member of IEEE, and has been
elected as a Fellow of the American Association of Artificial Intelligence (AAAI).

23

Theory for Coordinating Concurrent Hierarchical Planning Agents
Using Summary Information

Bradley J. Clement and Edmund H. Durfee
University of Michigan
Ann Arbor, MI 48109

fbradc, durfeeg@umich.edu

Abstract

Interacting agents that interleave planning, plan
coordination, and plan execution for hierarchical
plans (e.g. HTNs or procedures for PRS) should
reason about abstract plans and their concurrent
execution before they are fully re�ned. Poor de-
cisions made at abstract levels can lead to costly
backtracking or even failure. We claim that bet-
ter decisions require information at abstract lev-
els that summarizes the preconditions and e�ects
that must or may apply when a plan is re�ned.
Here we formally characterize concurrent hierar-
chical plans and a method for deriving summary
information for them, and we illustrate how sum-
mary conditions can be used to coordinate the
concurrent interactions of plans at di�erent levels
of abstraction. The properties of summary con-
ditions and rules determining what interactions
can or might hold among asynchronously execut-
ing plans are proven to support the construction
of sound and complete coordination mechanisms
for concurrent hierarchical planning agents.

Introduction

The study of concurrent action in relation to plan-
ning (George� 1984) has improved our understanding
of how agents can reason about their interactions in
order to avoid conicts during concurrent plan execu-
tion. Conicts can be avoided by reducing or eliminat-
ing interactions by localizing plan e�ects to particular
agents (Lansky 1990), and by merging the individual
plans of agents by introducing synchronization actions
(George� 1983). In fact, planning and merging can be
interleaved, such that agents can propose next-step ex-
tensions to their current plans and reconcile conicts
before considering extensions for subsequent steps. By
formulating extensions in terms of constraints rather
than speci�c actions, a \least commitment" policy can
be retained (Ephrati & Rosenschein 1994).
For many applications, planning e�ciency can be

enhanced by exploiting the hierarchical structure of

Copyright c1999, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.
This work was supported in part by NSF (IRI-

9158473) and DARPA (F30602-98-2-0142).

planning operations. Rather than building a plan from
the beginning forward (or end backward), hierarchical
planners identify promising classes of long-term activ-
ities (abstract plans), and incrementally re�ne these
to eventually converge on speci�c actions. Planners
such as NOAH (Sacerdoti 1977) and NONLIN (Tate
1977) have this character, and are often considered in-
stances of a class of planners called Hierarchical Task
Network (HTN) planners. By exploiting the hierarchi-
cal task structure to focus search, HTN planners often
converge much more quickly to e�ective plans. They
are also becoming increasingly well understood (Erol,
Hendler, & Nau 1994).

Using HTN planning for concurrently-executing
agents is less well understood, however. If several HTN
planning agents are each generating their own plans,
how and when should these be merged? Certainly,
merging could wait until the plans were fully re�ned,
and techniques like those of George� (mentioned pre-
viously) would work. But interleaving planning and
merging holds greater promise for identifying and re-
solving key conicts as early in the process as possible
to try to avoid backtracking or failure. Such interleav-
ing, however, requires the ability to identify potential
conicts among abstract plans.

Corkill (Corkill 1979) studied interleaved planning
and merging in a distributed version of the NOAH
planner. He recognized that, while most of the con-
ditions a�ected by an abstract plan operator might be
unknown until further re�nement, those that deal with
the overall e�ects and preconditions that hold no mat-
ter how the operator is re�ned can be captured and
used to identify and resolve some conicts. He recog-
nized that further choices of re�nement or synchroniza-
tion choices at more abstract levels could lead to un-
resolvable conicts at deeper levels, and backtracking
could be necessary. Our work is directed toward avoid-
ing such backtracking by improving how an abstract
plan operator represents all of the potential needs and
e�ects of all of its potential re�nements.

Our motivation for doing this is not simply to make
interleaved planning and merging with HTNs more
e�cient, but also to support another crucial use of
HTN concepts{speci�cally, exible plan execution sys-
tems such as PRS (George� & Lansky 1986), RAPS

24

goodelle
Text Box
Appendix C:

(Firby 1989), etc., that similarly exploit hierarchical
plan spaces. Rather than re�ne abstract plan oper-
ators into a detailed end-to-end plan, however, these
systems interleave re�nement with execution. By post-
poning re�nement until absolutely necessary, such sys-
tems leave themselves exibility to choose re�nements
that best match current circumstances. However, this
means that re�nement decisions at abstract levels are
made and acted upon before all of the detailed re�ne-
ments need be made. If such re�nements at abstract
levels introduce unresolvable conicts at detailed lev-
els, the system ultimately gets stuck part way through
a plan that cannot be completed. While backtrack-
ing is possible for HTN planning (since no actions are
taken until plans are completely formed), it might not
be possible when some (irreversible) plan steps have al-
ready been taken. It is therefore critical that the spec-
i�cations of abstract plan operators be rich enough to
summarize all of the relevant re�nements to anticipate
and avoid such conicts. In this paper, we formally
characterize methods for deriving and exploiting such
rich summaries to support interleaved local planning,
coordination (plan merging), and execution.

Simple Example

This example illustrates the use of summary informa-
tion, explains some terminology, and further motivates
the formalism of a theory for concurrent hierarchical
plans (CHiPs) and summary information.
Suppose that two agents wish to go through a door-

way to another location, (row, column), as shown
in Figure 1. Agent A has a hierarchical plan, p, to
move from (0,0) to (0,4), and B also has a plan, q,
to move from (2,0) to (2,4), but they need to coordi-
nate their plans to avoid collision. Agent A could have
preprocessed plan p to derive its summary informa-
tion. The set of summary preconditions of p includes
all its preconditions and those of its subplans that must
be met external to p in order for p to execute suc-
cessfully: fAt(A; 0; 0), :At(B; 0; 1), :At(B; 1; 0), : : :,
:At(B; 0; 4)g. The proposition At(A; 0; 0) is a must
condition because no matter how p is executed, the
condition must hold. :At(B; 1; 0) is may because it
may be required depending on the path A takes. Like-
wise, the summary postconditions of p are its e�ects
and those of its subplans that are seen externally:
fAt(A; 2; 0), :At(A; 0; 0), :At(A; 1; 0), : : :g. The sum-
mary inconditions are any conditions that must hold
within the interval of time that the plan is executing
and can be must or may and always or sometimes.
An always condition is required to hold throughout the
duration of any execution of the plan. For example, a
must, always incondition of p could be PowerOn(A){
the power must always be on. At(A; 1; 0) is a may,
sometimes incondition of p because Amay choose that
path and would only be there at some time. These con-
ditions and descriptors, such as must and always, pro-
vide the necessary information to reason about what

A

B

DA

DB

0

1

2

0 1 2 3 4

Figure 1: Agents A and B go through a doorway.

conditions must or may be achieved or clobbered when
ordering a set of plan executions.
Now suppose A sends B psum, the summary in-

formation for p. Agent B can now reason about
the interactions of their plans based on their com-
bined summary information. For instance, based
only on the summary information, B can determine
that if p is restricted to execute before q, then
the plans can be executed (re�ned) in any way, or
CanAnyWay(b,psum,qsum).

1 So, B could tell A to go
ahead and start execution and to send back a mes-
sage when p is �nished executing. However, B may
instead wish to overlap their plan executions for bet-
ter e�ciency. Although CanAnyWay(o,psum,qsum) is
not true, B could use the summary conditions to deter-
mine that there might be some way to overlap them,
or MightSomeWay(o,psum,qsum). Then, B could ask
A for the summary information of each of p's subplans,
reason about the interactions of lower level actions in
the same way, and �nd a way to synchronize the sub-
plans for a more �ne-grained solution.
Consider another case where A and B plan to

move to the spot directly between them, (1,0), and
can choose from di�erent routes. MightSomeWay(b,
psum, qsum) would be false since the postconditions of
p must always clobber the preconditions of q. If we
wanted to describe a rule for determining whether two
actions can or might overlap, it is not obvious how
this should be done. The di�culty of composing such
rules stems from an imprecise speci�cation of concur-
rent plan execution and the large space of potential
plans that have the same summary information. If the
MightSomeWay(o, psum, qsum) rule is not speci�ed in
a complete way, the agent may not determine that the
overlaps relation cannot hold until it has exhaustively
checked all synchronizations of p and q's primitive sub-
plans. As the number of subplans grows, this becomes
an intractable procedure (Vilain & Kautz 1986). Even
worse would be if, for the sake of trying to be com-
plete, a rule is speci�ed in an unsound way leading
to a synchronization choice that causes failure. We
give an example of this in (Clement & Durfee 1999b),
where we also implement a hierarchical plan coordi-

1We will often abbreviate Allen's thirteen temporal re-
lations (Allen 1983). Here, \b" is for the before relation.
\o" is for overlaps.

25

nation algorithm that uses summary information in
the manner described above. Our evaluations show
that coordinating at di�erent levels of abstraction for
di�erent cost scenarios results in better performance.
Thus, formalizing concurrent hierarchical plans, their
execution, and the derivation of summary conditions
is necessary to avoid costly, irreversible decisions made
during planning, plan execution, and coordination.

Overview

In the next section we describe the semantics of hierar-
chical plans and their concurrent execution to ground
our theory. The simple theory of action consistently
describes all temporal interactions among primitive or
hierarchical plans. We basically add a set of incon-
ditions to popular STRIPS-style plan representations
to reason about concurrent plan execution. In addi-
tion, we formalize traditional planning concepts, such
as clobbers and achieves, and reintroduce external con-
ditions (Tsuneto, Hendler, & Nau 1998) for reasoning
about CHiPs. We then describe the semantics of plan
summary information and a correct method for deriv-
ing it e�ciently. This, in turn, is used to describe
the construction of sound and complete rules for de-
termining how plans can de�nitely or might possibly
be temporally related. The result is a theory for prov-
ing correct coordination and planning mechanisms.

A Model of Hierarchical Plans and

their Concurrent Execution

The original purpose of developing the following the-
ory was to provide, as simply as possible, a consistent
model of execution to generally reason about the con-
current interaction of hierarchical plans. However, we
also wanted the model to share important aspects of
plans used by PRSs, HTNs, Allen's temporal plans,
and many STRIPS-style plan representations. As such,
this theory of action tries to distill appropriate aspects
of other theories, including (Allen & Koomen 1983),
(George� 1984), and (Fagin et al. 1995).

CHiPs

A concurrent hierarchical plan p is a tuple hpre, in,
post, type, subplans, orderi. pre(p), in(p), and post(p)
are sets of literals (v or :v for some propositional vari-
able v) representing the preconditions, inconditions,
and postconditions de�ned for plan p.2 The type of
plan p, type(p), has a value of either primitive, and,
or or. An and plan is a non-primitive plan that is
accomplished by carrying out all of its subplans. An
or plan is a non-primitive plan that is accomplished
by carrying out one of its subplans. So, subplans is
a set of plans, and a primitive plan's subplans is the
empty set. order(p) is only de�ned for an and plan

2Functions such as pre(p) are used for referential con-
venience throughout this paper. Here, pre and pre(p) are
the same, and pre(p) is read as \the preconditions of p."

p and is a set of temporal relations (Allen 1983) over
pairs of subplans that together are consistent; for ex-
ample, before(pi; pj) and before(pj ; pi) could not both
be in order. Plans left unordered with respect to each
other are interpreted to potentially execute in concur-
rently. For the example in Figure 1, A's highest level
plan p is the tuple hfg, fg, fg, and, fm1, m2, m3g,
fbefore(m1, m2), before(m2, m3)gi. Here, m1, m2,
and m3 correspond to p's subplans for moving to (1,1),
(1,3), and (0,4) respectively. There are no conditions
de�ned because p can rely on the conditions de�ned
for the primitive plans for moving between grid loca-
tions. The primitive plan for moving agent A from
(1,3) to (0,3) is the tuple hfAt(A; 1; 3)g, fAt(A; 1; 3),
:At(B; 1; 3), :At(B; 0; 3)g, fAt(A; 0; 3), :At(A; 1; 3),
:At(B; 0; 3), :At(B; 1; 3)g, primitive, fg, fgi.
We also require postconditions to specify whether

the inconditions change or not. This helps simplify
the notion of inconditions as conditions that hold only
during plan execution whether because they are caused
by the action or because they are necessary conditions
for successful execution. If a plan's postconditions did
not specify the truth values of the inconditions' vari-
ables at the end of execution, then it is not intuitive
how those values should be determined in the presence
of concurrently executing plans. By requiring postcon-
ditions to specify such values, we resolve all ambiguity
and simplify state transitions (described in the section
below on Histories and Runs).
The decomposition of a CHiP is in the same style

as that of an HTN as described by Erol et al. (Erol,
Hendler, & Nau 1994). An and plan is a task network,
and an or plan is an extra construct representing a set
of all tasks that accomplish the same goal or compound
task. Tasks in a network are subplans of the plan cor-
responding to the network. High-level e�ects (Erol,
Hendler, & Nau 1994) are simply the postconditions
of a non-primitive CHiP. CHiPs can also represent a
variety of interesting procedures executable by PRSs.

Executions

We recursively describe an execution of a plan as an in-
stance of a decomposition and ordering of its subplans'
executions. This helps us reason about the outcomes
of di�erent ways to execute a group of plans, describe
state transitions, and formalize other terms.
The possible executions of a plan p is the set E(p).

An execution of p, e 2 E(p), is a triple hd; ts; tf i. ts(e)
and tf (e) are positive, non-zero real numbers repre-
senting the start and �nish times of execution e, and
ts < tf . d(e) is a set of subplan executions represent-
ing the decomposition of plan p under this execution
e. Speci�cally, if p is an and plan, then it contains
one execution from each of the subplans; if it is an or
plan, then it contains only one execution of one of the
subplans; and it is empty if it is primitive. In ad-
dition, for all subplan executions, e0 2 d, ts(e

0) and
tf (e

0) must be consistent with the relations speci�ed

26

in order(p). Also, the �rst subplan(s) to start must
start at the same time as p, ts(e

0) = ts(e); and the last
subplan(s) to �nish must �nish at the same time as the
p, tf (e

0) = tf (e). An execution for agent A's top-level
plan p (described previously in the section on CHiPs)
would be some e 2 E(p). e might be hfe1, e2, e3g, 4.0,
10.0i where e1 2 E(m1), e2 2 E(m2), e3 2 E(m3), and
e begins at time 4.0 and ends at time 10.0. e1 also
starts at 4.0, and e3 ends at 10.0.
The subexecutions of an execution e, sometimes re-

ferred to as subex(e), is de�ned recursively as the set of
subplan executions in e's decomposition unioned with
their subexecutions. For agent A, subex(e) = fe1, e2,
e3g [subex(e1) [subex(e2) [subex(e3). For conve-
nience, we say that a condition of a plan with an exe-
cution in the set containing e and e's subexecutions is
a condition of e. So, if A executes its top-level plan,
since :At(B; 1; 2) is an incondition of the primitive for
A to move from (1,1) to (1,2), it is also an incondition
of the primitive's execution, e2, and e.

Histories and Runs

We describe hypothetical possible worlds, called his-
tories, so that we can determine what happens in all
worlds, some, or none. We then can describe how the
state transforms according to a particular history. A
state of the world, s, is a truth assignment to a set of
propositions, each representing an aspect of the envi-
ronment. We treat a state as the set of true proposi-
tional variables.
A history, h, is a tuple hE; sIi. E is a set of plan

executions including those of all plans and subplans
executed by all agents, and sI is the initial state of the
world before any plan is begun. So, a history h is a
hypothetical world that begins with sI as the initial
state and where only executions in E(h) occur.
A run, r, is a function mapping time to states. It

gives a complete description of how the state of the
world evolves over time. We take time to range over
the positive real numbers. r(t) denotes the state of the
world at time t in run r. So, a condition is met at
time t if the condition is a non-negated propositional
variable v, and v 2 r(t) or if the condition is a negated
propositional variable :v, and v 62 r(t).
For each history h there is exactly one run, r(h)3,

that speci�es the state transitions caused by the plan
executions in E(h). The interpretation of a history by
its run is de�ned as follows. The world is in the initial
state at time zero: r(h)(0) = sI(h). In the smallest
interval after any point where one or more executions
start and before any other start or end of an execution,
the state is updated by adding all non-negated incon-
ditions of the plans and then removing all negated in-
conditions. Similarly, at the point where one or more
executions �nish, the state is updated by adding all

3For convenience, we now treat r as a function mapping
histories to runs, so r(h)(t) is a mapping of a history and
a time to a state.

non-negated postconditions of the plans and then re-
moving all negated postconditions. Lastly, if no exe-
cution of a plan begins or ends between two points in
time, then the state must be the same at those points.
First order logic sentences for these axioms are speci-
�ed in a larger report (Clement & Durfee 1999a).
Now we can de�ne what it means for a plan to exe-

cute successfully. An execution e = hd; ts; tf i succeeds
in h if and only if the plan's preconditions are met at
ts; the inconditions are met throughout the interval
(ts; tf); the postconditions are met at tf ; and all exe-
cutions in e's decomposition are in E(h) and succeed.
Otherwise, e fails. So, in a history h where agent A
successfully executes a plan (as described previously in
the section on Executions) to traverse the room, E(h)
= feg [subex(e), and all conditions of all plans with
executions in E(h) are met at the appropriate times.
Given the example primitive conditions in the section
on CHiPs and the axioms just described for state tran-
sitions, if agent B happened to start moving into A's
target location, (0,4), at the same time as A, then ei-
ther A's primitive plan execution eA �nishes before B's
and the :At(A; 0; 4) incondition of B's primitive exe-
cution eB is not met (clobbered) at tf (eA); eB �nishes
before eA and similarly clobbers eA's incondition; or
they both �nish simultaneously clobbering each oth-
ers' At(A/B; 0; 4) postconditions. If eA fails, then e3
and the top-level execution e must also fail.

Asserting, Clobbering, and Achieving

In conventional planning, we often speak of clobber-
ing and achieving preconditions of plans (Weld 1994).
In CHiPs, these notions are slightly di�erent since in-
conditions can clobber and be clobbered, as seen in
the previous section. Formalizing these concepts helps
prove properties of summary conditions. However, it
will be convenient to de�ne �rst what it means to as-
sert a condition.
An execution e of plan p is said to assert a condition

` at time t in a history h if and only if ` is an incondition
of p, t is in the smallest interval beginning after ts(e)
and ending before a following start or �nish time of
any execution in E(h), and ` is satis�ed by r(h)(t); or
` is a postcondition of p, t = tf (e), and ` is satis�ed by
r(t). So, asserting a condition only causes it to hold if
the condition was not previously met. Otherwise, the
condition was already satis�ed and the action requiring
it did not really cause it.
A precondition ` of plan p1 is [clobbered, achieved]

4 in
e1 (an execution of p1) by e2 (an execution of plan p2)
at time t if and only if e2 asserts [`0, `] at t; ` , :`0;
and e2 is the last execution to assert ` or `0 before
or at ts(e1). An [incondition, postcondition] ` of plan
p1 is clobbered in e1 by e2 at time t if and only if e2
asserts `0 at t; ` , :`0; and [ts(e1) < t < tf (e1),

4We use braces [] as a shorthand when de�ning similar
terms and procedures. For example, saying \[a, b] implies
[c, d]" means a implies c, and b implies d.

27

t = tf (e1)]. Achieving inconditions and postconditions
does not make sense for this formalism, so it is not
de�ned. In the previous section when eA �nished �rst
and asserted At(A; 0; 4), it clobbered the incondition
:At(A; 0; 4) of B's primitive plan in eB at tf (eA).

External Conditions

As recognized in (Tsuneto, Hendler, & Nau 1998), ex-
ternal conditions are important for reasoning about po-
tential re�nements of abstract plans. Although the ba-
sic idea is the same, we de�ne them a little di�erently
and call them external preconditions to di�erentiate
them from other conditions we call external postcondi-
tions. Intuitively, an external precondition of a group
of partially ordered plans is a precondition of one of
the plans that is not achieved by another in the group
and must be met external to the group. External post-
conditions, similarly, are those that are not undone by
plans in the group and are net e�ects of the group.
Formally, an external precondition ` of an interval

(t1; t2) in history h is a precondition of a plan p with
some execution e 2 E(h) for which t1 � ts(e) < t2,
and ` is neither achieved nor clobbered by an execu-
tion at a time t where t1 � t � ts(e). An external
precondition of an execution e = hd; ts; tf i is an exter-
nal precondition of an interval (t1; t2) in some history
where t1 � ts; tf � t2; and there are no other plan exe-
cutions other than the subexecutions of e. An external
precondition of a plan p is an external precondition of
any of p's executions. It is called a must precondition
if it is an external precondition of all executions; oth-
erwise it is called a may precondition. At(A; 0; 0) is
an external precondition of agent A's top-level plan p
(Figure 1) since no subplan in p's hierarchy achieves
At(A; 0; 0). At(A; 1; 1) is not an external precondition
of p because it is achieved internally by the execution
of subplan m1 (described in the section on CHiPs).
Similarly, an external postcondition ` of an interval

(t1; t2) in h is a postcondition of a plan p with some
execution e 2 E(h) for which t1 � tf (e) � t2; ` is
asserted by e; and ` is not clobbered by any execu-
tion at a time t where tf (e) < t � t2. External post-
conditions of executions and plans can be de�ned in
the same way as external preconditions. At(A; 0; 4) is
an external postcondition of agent A's top-level plan
p since no subplan in p's hierarchy cancels the e�ect.
At(A; 1; 3), an external postcondition of m2 is not an
external postcondition of p because it is cancelled in-
ternally by the execution of subplan m3 when it later
asserts :At(A; 1; 3).

Plan Summary Information

With the previous formalisms, we can now de�ne sum-
mary information and describe a method for comput-
ing it for non-primitive plans. The summary infor-
mation for a plan p is psum. Its syntax is given as
a tuple hpresum; insum; postsumi, whose members are
sets of summary conditions. The summary [pre, post]

conditions of p, [presum(p), postsum(p)], contain the
external [pre, post] conditions of p. The summary in-
conditions of p, insum(p), contain all conditions that
must hold within some execution of p for it to be suc-
cessful. A condition c in one of these sets is a tuple
h`; existence; timingi. `(c) is a literal. The existence
of c can be must ormay. If existence(c) = must, then
c is called a must condition because ` holds for every
successful plan execution (` must hold). For conve-
nience we usually write must(c). c is a may condition
(may(c) is true) if there is at least one plan execution
where `(c) must hold. The timing of c can take the
values always, sometimes, first, last. timing(c) is
always for c 2 insum if `(c) is an in-condition that
must hold throughout the execution of p (` holds al-
ways); otherwise, timing(c) = sometimes meaning
`(c) holds at one point, at least, within an execu-
tion of p. The timing is first for c 2 presum if `(c)
holds at the beginning of an execution of p; otherwise,
timing = sometimes. Similarly, timing is last for
c 2 postsum if `(c) holds at the end of an execution of
p; otherwise, it is sometimes. Although existence and
timing syntactically only take one value, semantically
must(c)) may(c), and always(c)) sometimes(c).
See the Introduction for an example of summary con-
ditions derived for an abstract plan.

Deriving Summary Conditions

The method for deriving the summary conditions of a
plan p is recursive. First, summary information must
be derived for each of p's subplans, and then the fol-
lowing procedure derives p's summary conditions from
those of its subplans and its own sets of conditions.
This procedure only apply to plans whose expansion is
�nite and which have the downward solution property.
This is the property where every or plan in the hierar-
chy can be re�ned successfully through one or more of
its subplans.

Summary conditions for primitives and non-primitives
� First, for each literal ` in pre(p), in(p), and post(p), add
a condition c with literal ` to the respective set of sum-
mary conditions for plan p. existence(c) is must, and
timing(c) is first, always, or last if ` is a pre-, in-, or
postcondition respectively.

Summary [pre, post] conditions for and plan
� Add a condition c to the summary [pre, post] conditions
of and plan p for each summary [pre, post] condition c0 of
p's subplans that is not [must-achieved, must-undone]5

by another of p's subplans, setting `(c) = `(c0).6

� Set existence(c) = must if `(c) is a [pre, post] condi-
tion of p or is the literal of a must summary [pre, post]

5See (Clement & Durfee 1999a) and the proof ending
this section about how to determine must-achieved, may-
achieved, must-undone, and may-undone.

6To resolve ambiguity with set membership, we say that
any two summary conditions, c and c0 are equal if `(c) =
`(c0) and they belong to the same set of summary conditions
for some plan.

28

condition in a subplan of p that is not [may-achieved,
may-undone] by any other subplans. Otherwise, set
existence(c) = may.

� Set timing(c) = [first; last] if `(c) is a [pre, post] con-
dition of p or the literal of a [first, last] summary [pre,
post] condition of a [least, greatest] temporally ordered
subplan (i.e. no others are constrained by order(p) to
[begin before, end after] it). Otherwise, set timing(c) =
sometimes.

Summary [pre, post] conditions for or plan
� Add a condition c to the summary [pre, post] conditions
of or plan p for each summary [pre, post] condition c0 in
p's subplans, setting `(c) = `(c0).

� Set existence(c) = must if `(c) is a [pre, post] condition
of p or a must summary [pre, post] condition of all of p's
subplans. Otherwise, set existence(c) = may.

� Set timing(c) = [first; last] if `(c) is a [pre, post] con-
dition of p or the literal of a [first, last] summary [pre,
post] condition in a subplan. Otherwise, set timing(c) =
sometimes.

Summary inconditions for and plan
� Add a condition c to the summary inconditions of and
plan p for each c0 in C de�ned as the set of summary in-
conditions of p's subplans unioned with the set of sum-
mary preconditions of the subplans that are not first
in a least temporally ordered subplan and with the set
of summary postconditions of the subplans that are not
last in a greatest temporally ordered subplan, and set
`(c) = `(c0).

� Set existence(c) = must if `(c) is an incondition of p or
a literal of a must summary condition c0 2 C, as de�ned
above. Otherwise, set existence(c) = may.

� Set timing(c) = always if `(c) is an incondition of p
or a literal in an always summary incondition in every
subplan of p. Otherwise, set timing(c) = sometimes.

Summary inconditions for or plan
� Add a condition c to the summary inconditions of or plan

p for for each summary incondition c0 in p's subplans,
setting `(c) = `(c0).

� Set existence(c) = must if `(c) is an incondition of p
or a must summary incondition of all of p's subplans.
Otherwise, set existence(c) = may.

� Set timing(c) = always if `(c) is an incondition of p or
an always summary incondition of all of p's subplans.
Otherwise, set timing(c) = sometimes.

Consider deriving the summary conditions of m2

from its two primitive subplans (as introduced in the
section on CHiPs). Suppose p1 is the primitive subplan
for moving agent A from (1,1) to (1,2), and p2 moves A
from (1,2) to (1,3). First, the summary conditions of
the primitives must be derived. These are simply the
conditions already de�ned for the primitives according
to the �rst step of the procedure. m2 has no condi-
tions de�ned for itself, so all will come from p1 and
p2. Since m2 is an and plan, its only summary precon-
dition is At(A; 1; 1) from p1 because p1 must achieve
p2's only precondition At(A; 1; 2). At(A; 1; 1) is amust
summary condition because it is a must summary pre-
condition in p1, and no other subplan (p2) may achieve
At(A; 1; 1). At(A; 1; 1) is also first because it is a first
summary precondition of p1, and p1 precedes p2.

The procedure above ensures that external condi-
tions are captured by summary conditions and must,
always, first, and last have their intended meanings.
The actual proof of these properties is all-inclusive
since the truth of each property depends on those of
others. However, we give a proof of one (assuming
the others) to illustrate how we verify these proper-
ties using the language developed in this paper. The
full proof is given in an extended report (Clement &
Durfee 1999a). These results ease the proofs of sound-
ness and completeness for inference rules determining
how CHiPs can de�nitely or potentially interact so that
good planning and coordination decisions can be made
at various levels within and among plan hierarchies.

Theorem The set of external preconditions for a plan
is equivalent to the set of all literals in the plan's sum-
mary preconditions.

Proof by induction over the maximum subplan depth.
The base case is a primitive plan p (subplan depth
zero). The summary preconditions include a condition
for every precondition of p, which must be an external
precondition of p, so this case is satis�ed. Assume that
the theorem is true for all plans of maximum depth
� k. Any plan p of maximum depth k + 1 must have
subplans with maximum depths � k. It is not di�-
cult to show that the external preconditions of p must
be the preconditions of p and those external precon-
ditions (call them prex) of p's subplans that are not
must-achieved (achieved in all executions) by another
subplan of p.
By the inductive hypothesis, the external conditions

of the subplans are captured in their summary con-
ditions, and the existence and timing information to-
gether with the order of p's subplans can be used to de-
termine whether some external precondition of a sub-
plan is must-achieved. Table 1 shows this by describing
for all cases the constraints on order(p) where `(c0) of
p0 is must-achieved by p00. If we did not assume the
downward solution property, then we would addition-
ally need to make sure that no other plan could clobber
`(c0) after p00 asserts the condition. Hence, the external
preconditions in prex that are not must-achieved are
exactly those determined in the rule for determining
the summary preconditions of an and plan. Therefore,
the external conditions of p are exactly those described
as the summary preconditions of p in the procedure de-
scribed above. 2

Complexity

The procedure for deriving summary conditions works
by basically propagating the conditions from the prim-
itives up the hierarchy to the most abstract plans. Be-
cause the conditions of any non-primitive plan depend
only on those of its immediate subplans, deriving sum-
mary conditions can be done quickly. Given that an
agent has an instantiated plan hierarchy with n non-
primitive plans, each of which have b subplans and
c conditions in each of their summary pre-, in-, and

29

c00 2 c0 2 p00 must-achieve c0

postsum(p00) presum(p0) 8e0 2 E(p0);

must last must first e00 2 E(p00)
F ? ? ? false

T ? ? ? tf (e
00) � ts(e

0)

c00 2 insum(p00)
must always must first
F ? ? ? false

? F ? ? false

T T ? F ts(e
00) � ts(e

0)^

tf (e
0) � tf (e

00)

? T ts(e
00) < ts(e

0) < tf (e
00)

Table 1: Ordering constraints necessary for subplan p00

to must-achieve c0 2 presum of subplan p0. \?" means
that the constraints hold for both truth values. false
means that there are no ordering constraints guaran-
teeing that p0 is achieved by p00.

postconditions, deriving the summary conditions of the
non-primitive plans can be bounded by O(nb2c2) op-
erations. This comes from the worst case in which all
plans are and plans requiring the procedure to test
each of c conditions in each of b subplans to see if they
are achieved/clobbered by any those same conditions
in any of the same subplans for each of the n and plans.
However, n = O(bd) for hierarchies of depth d, so the
complexity of the procedure for deriving summary con-
ditions is more simply O(n(log2n)c2).

Soundness and Completeness of

Determining Temporal Relations

With the properties of summary information proven,
we can safely reason about the interactions of plans
without information about their subplans. Based on
the existence and timing information carried by sum-
mary conditions, we can determine what relations
can or might hold between CHiPs without search-
ing their subplans. In many coordination tasks, if it
could be determined that certain temporal relations
can hold among plans no matter how they are decom-
posed (CanAnyWay) or that certain relations can-
not hold for any decomposition (:MightSomeWay),
then coordination decisions can be made at abstract
levels without entering a potentially costly search for
valid plan merges. Here we prove the soundness and
completeness of rules determining CanAnyWay and
MightSomeWay relations based on summary infor-
mation. The use of these rules is illustrated in the
Introduction and explored further in (Clement & Dur-
fee 1999b). For convenience, we will abbreviate Can
to C, Any to A, Way to W , and so on.
Informally, [CAW (rel, psum, qsum), MSW (rel,

psum, qsum)] says that the temporal relation rel [can,
might] hold for any CHiPs p and q whose summary
information is psum and qsum for [any way, some way]
that p and q may be executed. We formally describe
these relations by explaining what soundness and com-
pleteness mean for rules to determine them.
Let us de�ne AW (P , sI) to mean that in any history

h with initial conditions sI and where E(h) includes
an execution of each plan in set P as well as its subex-
ecutions, all executions succeed. Also, let [AW (rel,
p, q), SW (rel, p, q)] be true i� for [any, some] his-
tory h where AW (fpg, sI(h)) and AW (fqg, sI(h))
are true, and E(h) includes executions of p and q and
their subexecutions satisfying relation rel, all execu-
tions succeed. So, a rule for determining [CAW (rel,
psum, qsum), MSW (rel, psum, qsum)] is sound if when-
ever the rule returns true, [AW (rel, p, q), SW (rel,
p, q)] is true for [all pairs, some pair] of plans whose
summary information is psum and qsum. The rule is
complete if whenever [AW (rel, p, q), SW (rel, p, q)] is
true for [all, some pair of] plans p and q with summary
conditions psum and qsum, the rule also returns true.
Now we state the rules for determining overlaps.

CAW (o; psum; qsum) returns true i� there is no cp and
cq such that `(cp) , :`(cq) and either cp 2 insum(p)
and cq 2 presum(q) [insum(q) or cp 2 postsum(p)
and cq 2 insum(q). MSW (o; psum; qsum) returns true
i� there is no cp and cq such that `(cp) , :`(cq);
must(cp) and must(cq) is true; the timing of cp
and cq is either first, always, or last; and either
cp 2 insum(p) and cq 2 presum(q) [insum(q) or
cp 2 postsum(p) and cq 2 insum(q). Note that for n
conditions in each of the pre-, in-, and postconditions
of p and q, in the worst case each condition in one plan
must be compared with each in another plan, so the
complexity of determining CAW and MSW is O(n2).
Now we will show that the above rules are both sound
and complete. The proofs of rules for other temporal
relations are no more di�cult than this one and can
be done constructively in the same style.

Theorem CAW (o, psum, qsum) and MSW (o, psum,
qsum) are sound and complete.

Proof Since we assume AW (fpg, sI) and AW (fqg,
sI), the only way executions of p or q could fail is if a
condition in one is clobbered by the other. However,
a condition is clobbered only by the assertion of the
negation of its literal. Thus, the presence of conditions
involving the propositional variable v cannot clobber or
achieve conditions involving the propositional variable
v0 if v 6= v0. In addition, all cases of execution failure
can be broken down into inconditions of some execu-
tion e clobbering conditions that must be met in the in-
terval (ts(e); tf (e)) and postconditions of some execu-
tion e clobbering conditions at or after tf (e). With this
established it is not di�cult to show that the only pairs
of interacting sets where clobbering occurs for the over-
laps relation include (insum(p), presum(q)), (insum(p),
insum(q)), and (postsum(p), insum(q)). And, because
the clobbering of a single literal causes execution fail-
ure, we can describe all histories in terms of the pres-
ence and absence of summary conditions based on a
single propositional variable.
This is done for the overlaps relation in Table 2.

Here, we give all instances of these interacting sets and
claim that the listed truth values for CAW andMSW

30

A = insum(p) A = insum(p) A = postsum(p)
A B B = presum(q) B = insum(q) B = insum(q)

CAW MSW CAW MSW CAW MSW
1 - ? T T T T T T

? - T T T T T T

2 ` ` T T T T T T
3 ` :`

ma=lmf=a
a T T T T F F F F F F
b F ? ? ? F T F T F T
c ? F ? ? F T F T F T
d ? ? F ? F T F T F T
e ? ? ? F F T F T F T
4 `;:` ` F T F T F T

5 ` `;:` F T F T F T
6 `;:` `;:` F T F T F T

Table 2: Truth values of CanAnyWay(o; p; q) and
MightSomeWay(o; p; q) for all interactions of condi-
tions. ` and :` are literals of summary conditions in
sets A and B. The condition is must if m = T, �rst
for f = T, last for l = T, and always for a = T.

are correct for the space of plan pairs (p; q) that elicit
the instances represented by each row. The literal `
in the �rst two columns represents any literal that ap-
pears in any condition of the set in whose column it
appears. For example, row 4 for the interaction of
(insum(p), presum(q)) is interpreted as the case where
there is a literal that appears in both sets, and its
negation also appears in just insum(p). [F, T] in the
[CAW , MSW] column means that [not all histories,
there is at least one history] with only the executions
and subexecutions of [any, some] pair of plans whose
summary conditions have literals appearing this way
are such that all executions succeed. Thus, [CAW (o,
psum, qsum), MSW (o, psum, qsum)] is true i� there
are no summary conditions matching cases in the table
where there is an F entry in a [CAW , MSW] column.
The validity of most entries in Table 2 is simple to

verify. In row 1 either there is no condition to be clob-
bered or no condition to clobber it, so all executions
must succeed. In row 3 unless the conditions are all
must and either first, always, or last (row 3a), there
is always a history containing the executions of some
plans where the two conicting conditions are not re-
quired to be met at the same time, and MSW is true.
Because rules de�ned for CAW (o, psum, qsum) and
MSW (o, psum, qsum) return true whenever the table
has a T entry, they are complete. And because the
table has a T entry for every case in which the rules
return true, the rules are sound. 2

Conclusions and Future Work

Coordination and planning for hierarchical plans of-
ten involve the re�nement of abstract plans into more
detail. However, the cost of backtracking or making ir-
reversible commitments makes it critical that the spec-
i�cation of abstract plan operators be rich enough to
anticipate and avoid costly planning/execution deci-
sions. We have addressed this directly by o�ering a
formalism for describing concurrent hierarchical plan

execution and methods for deriving summary condi-
tions and determining legal plan interactions in a sound
and complete fashion. This provides a foundation
upon which provably correct coordination and plan-
ning mechanisms can be built. In prior work that
motivates and validates this formalism, we describe a
general algorithm for merging hierarchical plans using
summary information, a speci�c implementation, and
a preliminary evaluation of the approach (Clement &
Durfee 1999b). Future work includes relaxing assump-
tions, such as the downward solution property, investi-
gating other types of plan summary information, and
constructing sound and complete algorithms for con-
current hierarchical planning and for interleaving plan-
ning, plan coordination, and plan execution.

References
Allen, J. F., and Koomen, J. A. 1983. Planning using a
temporal world model. In Proc. IJCAI, 741{747.

Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832{843.

Clement, B., and Durfee, E. 1999a. Theory for
coordinating concurrent hierarchical planning agents.
http://www.eecs.umich.edu/~bradc/papers/aaai99.

Clement, B., and Durfee, E. 1999b. Top-down search for
coordinating the hierarchical plans of multiple agents. In
Proc. Intl. Conf. Autonomous Agents.

Corkill, D. 1979. Heirarchical planning in a distributed
environment. In Proc. IJCAI, 168{175.

Ephrati, E., and Rosenschein, J. 1994. Divide and conquer
in multi-agent planning. In Proc. AAAI, 375{380.

Erol, K.; Hendler, J.; and Nau, D. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, University of Maryland.

Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995.
Reasoning about knowledge. MIT Press.

Firby, J. 1989. Adaptive Execution in Complex Dynamic
Domains. Ph.D. Dissertation, Yale University.

George�, M. P., and Lansky, A. 1986. Procedural knowl-
edge. Proc. IEEE 74(10):1383{1398.

George�, M. P. 1983. Communication and interaction in
multiagent planning. In Proc. AAAI, 125{129.

George�, M. P. 1984. A theory of action for multiagent
planning. In Proc. AAAI, 121{125.

Lansky, A. 1990. Localized search for controlling auto-
mated reasoning. In Proc. DARPA Workshop on Innov.
Approaches to Planning, Scheduling and Control, 115{125.

Sacerdoti, E. D. 1977. A structure for plans and behavior.
Elsevier-North Holland.

Tate, A. 1977. Generating project networks. In Proc.
IJCAI, 888{893.

Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing
external conditions to improve the e�ciency of htn plan-
ning. In Proc. AAAI, 913{920.

Vilain, and Kautz, H. 1986. Constraint propagation algo-
rithms for temporal reasoning. In Proc. AAAI, 377{382.

Weld, D. 1994. An introduction to least commitment
planning. AI Magazine 15(4):27{61.

31

Appendix D: Performance of Coordinating Concurrent Hierarchical
Planning Agents Using Summary Information

Bradley J. Clement and Edmund H. Durfee

Artificial Intelligence Laboratory, University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110, USA

+1-734-764-2138

fbradc, durfeeg@umich.edu

Abstract. Recent research has provided methods for coordinating the individu-
ally formed concurrent hierarchical plans (CHiPs) of a group of agents in a shared
environment. A reasonable criticism of this technique is that the summary infor-
mation can grow exponentially as it is propagated up a plan hierarchy. This paper
analyzes the complexity of the coordination problem to show that in spite of
this exponential growth, coordinating CHiPs at higher levels is still exponentially
cheaper than at lower levels. In addition, this paper offers heuristics, including
“fewest threats first” (FTF) and “expand most threats first” (EMTF), that take ad-
vantage of summary information to smartly direct the search for a global plan.
Experiments show that for a particular domain these heuristics greatly improve
the search for the optimal global plan compared to a “fewest alternatives first”
(FAF) heuristic that has been successful in Hierarchical Task Network (HTN)
Planning.

1 Introduction

In a shared environment with limited resources, agents may have enough information
about the environment to individually plan courses of action but may not be able to
anticipate how the actions of others will interfere with accomplishing their goals. Prior
techniques have enabled such agents to cooperatively seek merges of individual plans
that will accomplish all of their goals if possible [7]. This is done by identifying con-
flicts and adding synchronization actions to the plans to avoid conflicts. Agents can
also interleave planning and merging, such that they propose next-step extensions to
their current plans and reconcile conflicts before considering extensions for subsequent
steps. By formulating extensions in terms of constraints rather than specific actions, a
“least commitment” policy can be retained [5]. In addition, recent research has pro-
vided these agents with tools to coordinate their hierarchical plans resulting in more
flexible abstract solutions that allow the agents to choose refinements of their actions
during execution that can withstand some amount of failure and uncertainty [3]. In ad-
dition to adding ordering constraints, agents may need to eliminate choices of subplans
for accomplishing subgoals. In order to reason about abstract plans to identify and re-
solve conflicts, information about how the abstract plans must or may be refined into
lower level actions must be available. This information can be summarized from the
conditions of subplans in its potential refinements.

32

It was previously shown that using this strategy to find abstract solutions to the
coordination problem can improve the overall performance of coordinating and exe-
cuting plans [3]. As depicted in Figure 1, coordination is cheaper at higher levels in
the hierarchy because there are fewer plan steps to reason about. Although anecdo-
tal evidence was given to show this, in this paper we reinforce the result with a more
rigorous complexity analysis. At lower levels in the hierarchy, however, more detailed
solutions of potential greater quality can be found, but only after greater coordination
effort. Depending on how costly computation time is compared to the cost of executing
the coordinated plans, coordinating at levels in between the top and bottom could likely
result in better overall performance. On the other hand, only coordinating at the lowest
level can guarantee finding the optimal solution.

coordination
levels

crisper
coordination

lower cost

more
flexibility

Fig. 1. Hierarchical plan coordination at multiple levels.

If the goal is to find the optimal solution, a reasonable criticism might be that using
summary information to reason at abstract levels will be more costly than just coordi-
nating at the lowest level of primitive actions because of the overhead of deriving and
using summary information. The experimental results given here contradict this criti-
cism and show how reasoning about plans at abstract levels can better focus the search
to much more quickly find detailed solutions at the level of primitive actions.

This paper makes the following contributions:

– complexity analysis showing that finding global plans at higher levels can be expo-
nentially less expensive than at lower levels;

– search techniques and heuristics, including Fewest Threats First (FTF) and Expand
Most Threats First (EMTF), that take advantage of summary information;

– a description of a search algorithm that uses these heuristics for coordinating con-
current hierarchical plans; and

– preliminary experiments showing how these heurisitics can greatly save computa-
tion time in finding the optimal plan compared to a Fewest Alternatives First (FAF)
heuristic [4] that has been successful in Hierarchical Task Network (HTN) Planning
[8].

In addition, of potential interest to the planning community, we prove that resolving
threats among a set of unordered STRIPS operators is NP-complete. This result is nec-
essary our complexity analysis.

33

5

s0
0

1 2

3

4

s3
t2t1

Fig. 2. Transports t1 and t2 must pick up square and triangle evacuees respectively.

Reasoning about abstract plans with conditions of lower-level subplans has also
been used to efficiently guide the search through hierarchical plan spaces (HTN plan-
ning) for single agents [9]. Their technique computes the external conditions of abstract
plans, which are the preconditions required external to the abstract plans in order for
them to be executed successfully. We redefine these as external preconditions and ad-
ditionally employ external postconditions, the effects seen external to an abstract plan.
Since the coordination problem requires reasoning about the concurrent execution of
actions, we also derive summary inconditions, the intermediate, or internal, conditions
that must or may be required to hold during an abstract plan step for the execution to
be successful. We have detailed a procedure for deriving these summary conditions,
proofs of their properties, and sound and complete mechanisms for determining legal
interactions of abstract plans based on summary conditions elsewhere in [2].

1.1 A Simple Example

This example illustrates how agents can coordinate their actions using summary infor-
mation to guide the search for a global plan that resolves conflicts and optimizes the
total completion time of the agents’ plans. In a non-combative evacuation operation
(NEO) domain, transport agents are responsible for visiting certain locations along re-
stricted routes to pick up evacuees and bring them back to safety points. To avoid the
risk of oncoming danger (from a typhoon or an enemy attack), the transports need to
coordinate in order to avoid collisions along the single lane routes and must accomplish
their goals as quickly as possible.

Suppose there are two transport agents, t 1 and t2, located at safety points s0 and s3
respectively, and they are responsible for visiting the locations 0-2 and 1-4 respectively
as shown in Figure 2. Because there is overlap in the locations they must visit, they
must synchronize their individual plans in order to avoid a collision. The hierarchical
plan of t1 at the highest level is to evacuate the locations for which it is responsible.
This decomposes into a primitive action of moving to location 0 on the ring and then
to traverse the ring. It can choose to adopt a plan to travel in one direction around the
ring without switching directions, or it can choose to switch directions once. t1 can
then choose to either go clockwise or counterclockwise and, if switching, can choose to
switch directions at any location and travel to the farthest location it needs to visit from

34

where it switched. Once it has visited all the locations, it continues around until it can
go to the first safety point it finds. t2 has a similar plan.

Now let us say t1 collects summary information about t2’s plan and attempts to
coordinate it with its plan. Looking just at the highest level, t1 can determine that if it
finishes its plan before t2 even begins execution, then there will be no conflicts since
the external postconditions of its evacuate plan reveal that none of the routes are being
traversed. t1 then tells t2 to add a plan step to the beginning of its plan to wait for t1’s
signal, and t1 can append a signal subplan to the end of its plan. However, this coordi-
nated global plan is inefficient since there is no parallel action—the length ranges from
12 to 26 steps depending on how the agents decompose their plans during execution.
If the agents wish to get more concurrency, then they must expand the top-level plans
into more detailed plans and resolve conflicts there. At a mid-level expansion where
both agents move clockwise without switching directions, the algorithm finds a solu-
tion with a length of only eight steps. Now the search algorithm can eliminate the need
to resolve threats for any global plan whose length can be no shorter than eight. To find
the optimal solution, the agents must almost completely expand their hierarchies. This
is a plan of length seven where t1 moves clockwise until it reaches location s3, and t2
starts out clockwise, switches at location 4, and then winds up at s0.

1.2 Overview

In the next section, we describe how concurrent hierarchical plans can be coordinated
using summary information. Then we explain why it is easier to compute abstract solu-
tions at higher levels than at lower levels with a complexity analysis of the coordination
algorithm. Next we show experimental results verifying that summary information can
greatly improve the search for the optimal global plan even when it exists at the lowest
level of primitive actions.

2 Top-Down Coordination of Concurrent Hierarchical Plans

Our approach to coordinating concurrent hierarchical plans (CHiPs) is to first try to co-
ordinate the plans at the top-level of the hierarchies, then consider their subplans, and
iteratively expand selected subplans until a “feasible” solution is found. A general al-
gorithm for doing this is described in [3]. Here we briefly explain the basic mechanisms
for deriving and using summary information and then describe a specific algorithm we
use to evaluate the effectiveness of coordinating using summary information. All terms
and mechanisms mentioned here are formalized in [2].

2.1 CHiPs

As described here, hierarchical plans are non-primitive plans that each have their own
sets of conditions, a set of subplans, and a set of ordering constraints over the sub-
plans. These ordering constraints can be conjunctions of temporal interval relations [1]
or point relations over endpoints of plan execution time intervals. A primitive plan is
only different in that it has an empty set of subplans. In the style of STRIPS planning

35

operators [6], each of these plans has sets of preconditions and effects. 1 However, since
we necessarily worry about agents performing tasks in parallel, we also associate a set
of inconditions with each plan so that threats during the execution of a task can be
represented.

An agent’s plan library is a set of CHiPs, any of which could be part of the agent’s
current plan, and each plan in the hierarchy is either a primitive plan, an and plan, or
an or plan. An and plan decomposes into a set of plans that each must be accomplished
according to specified temporal constraints. An or plan decomposes into a set of plans
of which only one must be accomplished. So, for the example given in Section 1.1, there
is an or plan that would have subplans for traveling clockwise or counterclockwise, and
there are and plans for chaining primitive level movements between locations to get a
transport around the ring.

2.2 Plan Summary Information

We derive summary conditions for CHiPs by propagating the conditions from the prim-
itive level up the hierarchy. The procedure is quick (O(n 2c2) for n plans in the hierar-
chy each with c conditions) because the summary conditions of a plan are derived only
from its own conditions and the summary conditions of its immediate subplans. As
mentioned in the Section 1, summary preconditions, inconditions, and postconditions
are computed for each plan to represent the external preconditions, internal conditions,
and external postconditions respectively. Modal information about whether these con-
ditions must or may hold and whether they must hold throughout the plan’s execution
(always or sometimes) is kept to reason about whether certain plan interactions must
or may occur.

2.3 Temporal Interactions of CHiPs

In conventional planning, we often speak of clobbering and achieving preconditions of
plans [10]. With CHiPs these notions are slightly different since inconditions can clob-
ber and be clobbered. We use these concepts to determine whether a summary precon-
dition of a plan should be a summary condition of its parent. A summary precondition
is an external precondition of its subplans, and what makes the precondition external is
that it is not achieved by another subplan—it needs to be met outside the scope of the
parent plan. A summary postcondition is external because it is a net effect of the execu-
tion of the subplans. Thus, we need to also determine when a postcondition is undone
by another subplan since a postcondition is not external if it is undone.

Determining these relationships helps us derive summary information, but it also
helps identify threats across the plan hierarchies of the agents. For example, plan p of
one agent cannot clobber a condition c of plan q of another agent if there is another plan
r ordered between p and q that achieves c for q. However, if plan r only may achieve c
because c is a may postcondition of r, then p threatens q. Reasoning about these kinds
of interactions, we can determine that a set of temporal relations can hold among plans
no matter how they are decomposed (CanAnyWay) or that certain relations cannot

1 These are not summary conditions.

36

hold for any decomposition (:MightSomeWay). As the procedure for determining
these relations is similar to propagating summary information, its complexity is also
O(n2c2) for n plans with c conditions each [2].

2.4 Top-Down Search Algorithm

Since we can determine whether abstract plans CanAnyWay or MightSomeWay be
executed successfully under particular ordering constraints, we can integrate this into an
algorithm that smartly searches for a consistent global plan for a group of agents. The
particular algorithm we describe here is complete, and returns the optimal global plan
if it exists. The search starts out with the top-level plan of each agent which together
represent the global plan. It tries to find a solution at this level and then expands the
hierarchies deeper and deeper until the optimal solution is found or the search space
has been exhausted. A pseudocode description of the algorithm is given below.

A state of the search is a partially elaborated global plan that we represent as a set of
and plans (one for each agent), a set of temporal constraints, and a set of blocked plans.
The subplans of the and plans are the leaves of the partially expanded hierarchies of
the agents. The set of temporal constraints includes synchronization constraints added
during the search in addition to those dictated by the agents’ individual hierarchical
plans. Blocked subplans keep track of pruned or subplans.

The operators of the search are expanding non-primitive plans, blocking or sub-
plans, and adding temporal constraints on pairs of plans. When a plan is expanded, it is
replaced by its subplans, and the ordering information is updated in the global plan. Or
plans are only replaced by a subplan when all other subplans are blocked.

Blocking an or subplan can be effective in resolving a constraint in which the other
or subplans are not involved. This can lead to least commitment abstract solutions that
leave the agents flexibility in selecting among multiple applicable subplans. Another
approach is to select subplans (effectively blocking the others) to investigate choices
that are given greater preference or are more likely to resolve conflicts.

In the pseudocode below, the coordinating agent collects summary information
about the other agents’ plans as it decomposes them. The queue keeps track of ex-
panded search states. If the CanAnyWay relation holds for the search state, the Dom-
inates function determines if the current solutions are better for every agent than the
solution represented by the current search state and keeps it if the solution is not dom-
inated. If MightSomeWay is false, then the search space represented by the current
search state can be pruned; otherwise, the operators mentioned above are applied to
generate new search states. Nondeterministic “Choose” functions determine how these
operators are applied. Our implementation uses heuristics specified in Section 2.5 to
determine what choices are made. When a plan is expanded or selected, the ordering
constraints for that plan must be updated for the subplans that replace it. The Update-
Order function accomplishes this.

Hierarchical Plan Coordination Algorithm

plans = ;
for each agent ai

pi = get summary information for top-level plan

37

plans = plans [fpig
end for
queue = f(plans, ;, ;)g
solutions = ;
loop

if queue == ;
return solutions

end if
(plans, order, blocked) = Pop(queue)
if CanAnyWay(initialstate, plans, order, blocked)

solution = (plans, order, blocked)
if Dominates(solutions, solution) == false

solutions = solutions [fsolutiong
end if

end if
if MightSomeWay(initialstate, plans, order, blocked)

operator = Choose(fexpand, select, block, constraing)
if operator == expand

plan = ChooseAndPlan(plans)
if Exists(plan)

plan:subplans = get summary information for subplans of plan

plans = plans [plan:subplans - plan

UpdateOrder(order, plan, plan:subplans, plan:order)
end if

end if
if operator == select

plan = ChooseOrPlan(plans)
if Exists(plan)

plan:subplans = get summary information for subplans of plan

for each subplan 2 plan:subplans

newblocked = blocked [plan:subplans - fsubplang
newplans = plans [fsubplang - plan

neworder = order

UpdateOrder(neworder, plan, fsubplang, ;)
InsertStateInQueue(queue, newplans, neworder, newblocked)

end for
end if

end if
if operator == block

plan = ChooseOrPlan(plans)
if Exists(plan)

plan:subplans = get summary information for subplans of plan

for each subplan 2 plan:subplans where subplan 62 blocked

newblocked = blocked [subplan

neworder = order

if 9! subplan
0 2 plan:subplans, subplan

0 62 blocked

newplans = plans [fsubplan0g - plan

UpdateOrder(neworder, plan, fsubplan0g, ;)
else

newplans = plans

38

end if
InsertStateInQueue(queue, newplans, neworder, newblocked)

end for
end if

end if
if operator == constrain

plan = ChoosePlan(plans)
plan

0 = ChoosePlan(plans - fplang)
constraint = ChooseConstraint(fStart, Endg � f<, �, =, �, >g � fStart, Endg)
neworder = order [constraint

if Consistent(neworder)
InsertStateInQueue(queue, plans, neworder, blocked)

end if
end if

end if
end loop

Adding temporal constraints should only generate new search nodes when the or-
dering is consistent with the other global and local constraints. In essence, this operator
performs the work of merging non-hierarchical plans since it is used to find a syn-
chronization of the individual agents’ plans that are one level deep. In the pseudocode
above, the ChooseConstraint function nondeterministically investigates all orderings,
and inconsistent ordering constaints are pruned. However, in our implementation, we
only investigate legal ordering constraints that resolve threats that are identified by al-
gorithms determining must/may achieves and clobbers relations among CHiPs. In our
experiments, we separated the search for synchronizations from the expansion and se-
lection of subplans. An outer search was used to explore the space of plans at different
levels of abstraction. For each state in the outer search, an inner search explores the
space of plan merges by resolving threats with ordering constraints.

h Paragraph here arguing soundness and completeness. i

2.5 Heuristics Using Summary Information

As discussed in [3], summary information is valuable for finding coordinated plans at
abstract levels. However, this information can also be valuable in directing the search to
avoid branches in the search space that lead to inconsistent or suboptimal global plans.
Inconsistent global plans can be pruned away at the abstract level by doing a quick
check to see if MightSomeWay is false. In terms of the number of states expanded
during the search, employing this technique will always do at least as well as not us-
ing it. Another strategy that is employed is to first expand plans involved in the most
threats. For the sake of completeness, the order of plan expansions does not matter as
long as they are all expanded at some point when the search trail cannot be pruned.
But, employing the “expand on most threats first” (EMTF) heuristic aims at driving the
search down through the hierarchy to find the subplan(s) causing conflicts with others
so that they can be resolved more quickly. This is similar to a most-constrained variable
heuristic often employed in constraint satisfaction problems. Another heuristic used in
parallel in our experiments is “fewest threats first” (FTF). Here the search orders nodes

39

in the outer search queue by ascending numbers of threats to resolve. By trying to re-
solve the threats of global plans with fewer conflicts, it is hoped that solutions can be
found more quickly. So, EMTF is a heurisitic ordering plans to expand, and FTF orders
subplan choices and, thus, search states to investigate. In addition, in trying to find op-
timal solutions in the style of a branch-and-bound search, we use the cost of abstract
solutions to prune away branches of the search space whose minimum cost is greater
than the maximum cost of the current best solution. This technique can be used without
summary information, but then only solutions at the primitive level can be used to prune
the search space. Again, pruning abstract plans can only help improve the search. We
report experimental results in Section 4 that show that these techniques and heuristics
can greatly improve coordination performance.

3 Complexity

In [3], anecdotal evidence was given to show that coordinating at higher levels of ab-
straction is less costly because there are fewer plan steps. But, even though there are
fewer plans at higher levels, those plans have greater numbers of summary conditions to
reason about because they are collected from the much greater set of plans below. Here
we argue that even in the worst case where summary conditions increase exponentially
up the hierarchy, finding solutions at abstract levels is expected to be exponentially
cheaper than at lower levels.

The procedure for deriving summary conditions works by basically propagating the
conditions from the primitives up the hierarchy to the most abstract plans. Because
the conditions of any non-primitive plan depend only on those of its immediate sub-
plans, deriving summary conditions can be done quickly. In [2], it was reported that
the complexity of this is O(n(log2n)c2) for n non-primitive plans with c conditions
in each plan’s summary pre-, in-, and postconditions. This, however, does not tell us
how the complexity grows as a result of summary conditions accumulating in greater
and greater sets as they are propagated up the hierarchy. If c 0 is the greatest number
of literals in any plan’s pre-, in-, and postconditions, then the complexity is O(n 2c02).
Here, the worst case is when all plans are and plans, and the conditions of each plan are
completely different than those of any other plan. In this way, the maximum number
of conditions are propagated up the hierarchy and all of the expanded plans must be
synchronized to avoid conflicts. Consider a global hierarchy with n total plans, b sub-
plans for each non-primitive plan, and depth d. 2 At each level, the procedure tests each
condition in each summary condition set of the b subplans of each plan at that level
to see if they are achieved/clobbered/undone by any other subplan attempting to assert
that condition. Thus, a constant number of operations must be performed when com-
paring each condition in each subplan with every other condition in every other subplan
resulting in O(b2c2) operations for each plan with b subplans each having O(c) sum-
mary conditions. So, as shown in Figure 3, at the next-to-bottom depth level d�1, each
of the bd�1 plans has b primitive subplans each with O(c0) conditions. Thus, O(b2c02)

operations are performed for each of the bd�1 plans for a total of O(bd�1b2c02) op-

2 We consider the root at depth level 0 and the leaves at level d.

40

1 2 b

1 2 b

…

...…

… …..

…………...…..…...

d

d-1

d-2

2

1

0

level

O(bd-1b2c'2)
= O(bd+1c'2)

O(bd-2b2(bc')2)
= O(bd+2c'2)

O(b2b2(bd-3c')2)
= O(b2d-2c'2)

O(bb2(bd-2c')2)
= O(b2d-1c'2)

O(b2(bd-1c')2)
= O(b2dc'2)

O(1)

#operations to
derive summ. info.

O(bd!)

O(bd-1!)

O(bd-2!)

O(b2!)

O(b!)

1

solution
space

3c'bd

3c'+b3c'
= O(bc')

bd-1

O(b2c')bd-2

O(bd-2c')b2

O(bd-1c')b

O(bdc')1

#conds /
plan

#plans

1 2 b…

……....

………

O(b2dc'2)

O(b2(d-1)(bc')2)
= O(b2dc'2)

O(b2(d-2)(b2c')2)
= O(b2dc'2)

O(b4(b(d-2)c')2)
= O(b2dc'2)

O(b2(b(d-1)c')2)
= O(b2dc'2)

O(1)

#test operations /
solution candidate

Fig. 3. The table gives the number of plans and summary conditions for each plan at some level of
expansion of a global plan hierarchy (with branching factor b) where each plan has c0 conditions
in each set of pre-, in-, and postconditions. The number of operations to derive summary infor-
mation for all of the plans at a particular depth level is the product of the number of plans at that
level, the square of the number of subplans per plan, and the square of the number of conditions
per subplan. The number of operations to check if a candidate expansion under particular order-
ing constraints is a solution is on the order of the square of the product of the number of plans
and the number of summary conditions per plan at that level of expansion. The solution space is
the number of temporal orderings of the expanded plans (approximated by the factorial).

erations for that level. At level d � 2, there are bd�2 plans, and the number of con-
ditions that must be compared among their subplans at level d � 1 additionally in-
cludes those propagated from the primitive level for a total of 3c 0 + b3c0 conditions.
Thus, O(bd�2b2(c0 + bc0)2) operations are performed at level d � 2. This generalizes
to O(

Pd�1

i=0 b
ib2(bd�i�1c0)2) operations for the entire hierarchy. We can reduce this to

O(b2c02
Pd�1

i=0 b
2d�i�2) = O(b2dc02), and since n = O(bd), the complexity can be

simply stated as O(n2c02).

In this worst case, the number of summary conditions for an abstract plan grows
exponentially as you go up the hierarchy as shown in the second column of Figure
3. At the primitive level d, each plan has only 3c 0 = O(c0) conditions, and there are
c0 + bc0 = O(bc0) summary conditions for each plan at level d� 1 and O(b2c0). There
are at most 3nc0, or O(bdc0), summary conditions at the root of the hierarchy—this is
the total number of pre-, in-, and postconditions in the hierarchy. One might argue that
in such cases deriving summary information only increases computation. But, actually,
exponential computation time is saved when decisions based on summary information
can be made at abstract levels because the complexity from exponential growth in the
number of plans down the hierarchy outweighs the complexity of conditions growing
exponentially up the hierarchy. This is because, as will be shown, the only known al-

41

gorithms for synchronizing plan steps to avoid conflicts are exponential with respect to
the number of plans expanded in the hierarchy, which also grows exponentially with the
depth. This exponential growth down the hierarchy outweighs the exponential growth
of summary conditions in plans up the hierarchy. So the improvements made using
summary information can yield exponential savings while only incurring a small poly-
nomial overhead in deriving and using summary information.

Let’s make this more clear. At the ith depth level in the hierarchy, each of the
O(bi) plans has O(bd�ic02) summary conditions in the worst case. As described in
[2], the algorithm to check whether a particular ordering of n plan steps (each with
c summary conditions) results in all plans executing successfully is similar to deriv-
ing their collective summary information and has a complexity of O(n 2c2). Check-
ing such a synchronization for the plans at any level i in a plan hierarchy is, thus,
O(b2ib2d�2ic02) = O(b2dc02). So, since i drops out, the complexity of doing this check
is independent of the depth level. In Figure 3, this is shown in the fifth column of the
table where the number of operations is the same at each level. But, there is a huge
space of n! = O((bi)!) sequential orderings3 of the n plans at level i to potentially
check to find a valid synchronization.4 Thus, the search space grows doubly exponen-
tially down the hierarchy despite the worst case when the number of conditions grows
exponentially up the hierarchy. This argument assumes that finding a valid synchroniza-
tion is intractable for larger numbers of plan steps, so we show that it is actually NP-
complete. We reduce HAMILTONIAN PATH to the THREAT RESOLUTION problem
for STRIPS planning and claim that a similar reduction can be done for our problem
that allows concurrent execution.

Theorem THREAT RESOLUTION is NP-complete. This is the problem of determin-
ing whether there is a set of ordering constraints that can be added to a partial order
STRIPS plan such that no operator’s preconditions are threatened by another operator’s
effects.

Proof If there is a set of ordering constraints that will resolve all threats, then there is
at least one corresponding total order where there are no threats. Thus, the problem is
in NP since orderings of operators can be chosen non-deterministically, and threats can
be identified in polynomial time.

For a directed graphG = (V;E) with nodes v1; v2; : : : ; vn 2 V and edges e1; e2; : : : ; em 2

E (a set of ordered pairs of nodes), HAMILTONIAN PATH is the problem that asks if
there is a path that visits each node exactly once. We build an instance of THREAT
RESOLUTION (a partial order plan) by creating an operator for each node v i. The only
precondition of the operator is A(i), representing the accessibility of the node. There is
a postcondition A(j) for each edge ek = (vi; vj), and a postcondition A(l) for all other
nodes for which there is no edge from v i. All operators are unordered and the initial
state and goal state is empty.

3 There are more for other orderings allowing for concurrent execution.
4 This is why Georgeff[7] chose to cluster multiple operators into “critical regions” and synchro-

nize the (fewer) regions since there would be many fewer interleavings to check. By exploiting
the hierarchical structure of plans, we use the “clusters” predefined in the hierarchy to this kind
of advantage without needing to cluster from the bottom up.

42

If there is a Hamiltonian path for the graph, then the operators for the nodes can be
ordered the same as the nodes in the path because the accessibility preconditions of each
operator will be satisfied by the previous operator. If there is no Hamiltonian path for
the graph, then there is no consistent ordering of the operators. We know this because
there is a one-to-one mapping from an ordering of nodes to an ordering of operators. If
the ordering of the nodes is such that there is no edge from one to a succeeding node,
then the accessibility precondition of the corresponding operator will be clobbered. In
addition, for any walk through the graph, there eventually will be an unvisited node
for which there is no edge from the last node visited. In this case, the unvisited node
will be clobbered because its accessibility precondition will not be met. Thus, THREAT
RESOLUTION is NP-hard, and since it was shown to be in NP, it is NP-complete. 2

In order to show that resolving threats among CHiPs is also NP-complete, we only
need to add inconditions to each operator that prevent concurrent action. This can be
done by adding A(i) for vi and A(j) for every other vj 2 V to the inconditions of
the operator corresponding to v i for each vi 2 V . This ensures that the only temporal
relations that can hold between any pair of operators are before, after, meets, or
imeets, and the one-to-one mapping from paths in the graph to sequences of operators
is preserved.

There are only and plans in this worst case. In the case that there are or plans, by
similar argument, being able to prune branches at higher levels based on summary in-
formation will greatly improve the search despite the overhead of deriving and using
summary conditions. Obviously, the computational savings of using summary infor-
mation will be even greater when there are conditions common to plans on the same
level, and the number of summary conditions does not grow exponentially up the hier-
archy. Still, surely there are cases where none of the details of the plan hierarchy can
be ignored, and summary information would incur unnecessary overhead, but when the
size of problem instances are scaled, dealing with these details will likely be infeasible
anyway.

4 Experiments

The experiments described here used the coordination algorithm described in Section
2.4 with all of the stated heuristics. It was compared to another top-down search al-
gorithm that did not use summary information but used a FAF (“fewest alternatives
first”) heuristic [4] to decide the order in which or subplans are investigated. This sim-
ply means we chose to expand the or subplan that had the fewest number of subplan
choices. Since no summary information was used, threats could only be resolved at
primitive levels. The FAF heuristic has been shown to be effective in the HTN planning
domain to get large improvements in search time [8], and a similar approach to ours
shows how heuristics using external conditions can be used to get exponential improve-
ments over FAF [9]. We show here that summary information can also be used to gain
significant improvements over FAF. Certainly, a comparison of our approach with that
in [9] could help shed light on the benefits and disadvantages of varying amounts of
summary information. This is a future consideration of this work.

43

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Problems

C
P

U
 T

im
e

FAF

Summary Information

Fig. 4. CPU time measurements comparing summary information heuristics to FAF for finding
optimal solutions. FAF only solved problems 1-5 and 7; others were killed when the search queue
was too large to fit in memory.

The problems were hand-crafted from the NEO domain, described in the example
in the Introduction. Agents had plans to either visit their specified locations by travel-
ing in one direction only or switching directions at some location. These choices expand
into choices to begin traveling clockwise or counterclockwise. For the branch where the
agent switches directions, it can choose to change directions at any location it is speci-
fied to visit. Primitive actions are to move between adjacent locations without running
into another agent. Optimality is measured as the total completions time where each
move has a uniform time cost. We chose problems with four, six, and eight locations;
with two and three agents; and with no, some, and complete overlap in the locations the
agents visited. Results of the experiments are given in Figure 4.

For problems with only four locations and two agents, both algorithms found the
optimal solution quickly. For more complex algorithms, the heuristics using summary
information appear to make great improvements over FAF, which could only solve six
of the 21 problems within memory constraints. These results are by no means conclu-
sive, but they do show promise for search based on summary information. For most of
these problems, coordinating at the primitive level was intractable. In most cases, the
algorithm using summary information was able to find an abstract solution quickly.

44

5 Conclusions and Future Work

We have shown that summary information can can find solutions at higher levels ex-
ponentially more quickly than at lower levels; and we have identified heuristics and
search techniques that can take advantage of summary information in finding coor-
dinated plans. In addition, we have characterized a coordination algorithm that takes
advantage of these search techniques and experimentally shown how it can make large
improvements over an FAF heuristic in finding optimal coordinated plans. More work
is needed to show that these results translate to different domains, and future consider-
ations include comparing this approach to other planning heuristics that capitalize on
domain knowledge in order to better understand the relationship between plan struc-
ture and search performance. We expect the benefits of using summary information to
also apply to hierarchical planning and wish to compare these techniques with current
heuristics for concurrent hierarchical planning.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, November 1983.

2. B. Clement and E. Durfee. Theory for coordinating concurrent hierarchical planning agents.
In Proc. AAAI, 1999.

3. B. Clement and E. Durfee. Top-down search for coordinating the hierarchical plans of mul-
tiple agents. In Proc. Intl. Conf. Autonomous Agents, 1999.

4. K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intelligence, 52:49–
86, 1991.

5. E. Ephrati and J. Rosenschein. Divide and conquer in multi-agent planning. In Proc. AAAI,
pages 375–380, July 1994.

6. R. E. Fikes and Nilsson N. J. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

7. M. P. Georgeff. Communication and interaction in multiagent planning. In Proc. AAAI,
pages 125–129, 1983.

8. R. Tsuneto, J. Hendler, and D. Nau. Space-size minimizationin refinement planning. In Proc.
Fourth European Conference on Planning, 1997.

9. R. Tsuneto, J. Hendler, and D. Nau. Analyzing external conditions to improve the efficiency
of htn planning. In Proc. AAAI, pages 913–920, 1998.

10. D. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27–61, 1994.

45

Appendix E: Using Abstraction in Planning and Scheduling

Bradley J. Clement1, Anthony C. Barrett1, Gregg R. Rabideau1, and
Edmund H. Durfee2

1 Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109-8099 USA
fbclement, barrett, rabideaug@aig.jpl.nasa.gov

2 Artificial Intelligence Laboratory, University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA

durfee@umich.edu

Abstract. We present an algorithm for summarizing the metric resource require-
ments of an abstract task based on the resource usages of its potential refinements.
We use this summary information within the ASPEN planner/scheduler to coor-
dinate a team of rovers that conflict over shared resources. We find analytically
and experimentally that an iterative repair planner can experience an exponen-
tial speedup when reasoning with summary information about resource usages and
state constraints, but there are some cases where the extra overhead involved can
degrade performance.

1 Introduction

Hierarchical Task Network (HTN) planners [4] represent abstract actions that decom-
pose into choices of action sequences that may also be abstract, and HTN planning prob-
lems are requests to perform a set of abstract actions given an initial state. The planner
subsequently refines the abstract tasks into less abstract subtasks to ultimately generate
a schedule of primitive actions that is executable from the initial state. This differs from
STRIPS planning where a planner can find any sequence of actions whose execution can
achieve a set of goals. HTN planners only find sequences that perform abstract tasks and
a domain expert can intuitively define hierarchies of abstract tasks to make the planner
rapidly generate all sequences of interest.

Previous research [10, 9] has shown that, under certain restrictions, hierarchical re-
finement search reduces the search space by an exponential factor. Subsequent research
has shown that these restrictions can be dropped by reasoning during refinement about
the conditions embodied by abstract actions [3, 2]. These summarized conditions repre-
sent the internal and external requirements and effects of an abstract action and those
of any possible primitive actions that it can decompose into. Using this information, a
planner can detect and resolve conflicts between abstract actions and sometimes can find
abstract solutions or determine that particular decomposition choices are inconsistent.
In this paper, we apply these abstract reasoning techniques to tasks that use metric re-
sources. We present an algorithm that processes a task hierarchy description offline to
summarize abstract plan operators’ metric resource requirements.

This work was performed at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the National Aeronautics and Space Administration. This
work was also supported in part by DARAP(F30602-98-2-0142).

46

B

A D

C

F

E

Fig. 1. Example map of established paths between points in a rover domain, where thinner edges
are harder to traverse, and labeled points have associated observation goals

While planning and scheduling efficiency is a major focus of our research, another
is the support of flexible plan execution systems such as PRS [6], UMPRS [11], RAPS
[5], JAM [7], etc., that exploit hierarchical plan spaces while interleaving task decompo-
sition with execution. By postponing task decomposition, such systems gain flexibility to
choose decompositions that best match current circumstances. However, this means that
refinement decisions are made and acted upon before all abstract actions are decomposed
to the most detailed level. If such refinements at abstract levels introduce unresolvable
conflicts at more detailed levels, the system will get stuck part way through executing the
tasks to perform the requested abstract tasks. By using summary information, a system
that interleaves planning and execution can detect and resolve conflicts at abstract levels
to avoid getting stuck and to provide some ability to recover from failure.

In the next section this paper uses a traveling rover example to describe how we rep-
resent abstract actions and summary information. Given these representations, the subse-
quent section presents an algorithm for summarizing an abstract task’s potential resource
usage based on its possible refinements. Next we analytically show how summary in-
formation can accelerate an iterative repair planner/scheduler and make some empirical
measurements in a multi-rover planning domain.

2 Representations

To illustrate our approach, we will focus on managing a collection of rovers as they
explore the environment around a lander on Mars. This exploration takes the form of
visiting different locations and making observations. Each traversal between locations
follows established paths to minimize effort and risk. These paths combine to form a net-
work like the one mapped out in Figure 1, where vertices denote distinguished locations,
and edges denote allowed paths. While some paths are over hard ground, others are over
loose sand where traversal is harder since a rover can slip.

2.1 Resources and Tasks

More formally, we represent each rover’s status in terms of state and resource variables.
The values in state variables record the status of key rover subsystems. For instance, a
rover’s position state variable can take on the label of any vertex in the location network.
Given this representation of state information, tasks have preconditions/effects that we
represent as equality constraints/assignments. In our rover example traveling on the arc
from point A to point B is done with a go(A,B) task. This task has the precondition
(position=A) and the effect (position=B).

47

high path

go(A,3) go(3,B)
use 4w use 6w
15 min 25 min

go(A,B)

50 min
use 4w

move(A,B)

take low pathsoak rays soak rays soak rays
use -4w
20 min

use -5w use -6w
20 min 20 min

go(2,B)
use 3w use 3w use 6w
10 min 10 min 20 min

go(A,1) go(1,2)

morning activities

middle path

Fig. 2. AND/OR tree defining abstract tasks and how they decompose for a morning drive from
point A to point B along one of the three shortest paths in our example map

In addition to interacting with state variables, tasks use resources. While some re-
sources are only used during a task, using others persists after a task finishes. The first
type of resource is nondepletable, with examples like solar power which immediately
becomes available after some task stops using it. On the other hand, battery energy is
a depletable resource because its consumption persists until a later task recharges the
battery. We model a task’s resource consumption by subtracting the usage amount from
the resource variable when the task starts and for nondepletable resources adding it back
upon completion. While this approach is simplistic, it can conservatively approximate
any resource consumption profile by breaking a task into smaller subtasks.

Primitive tasks affect state and resource variables, and an abstract task is a non-leaf
node in an AND/OR tree of tasks.1 An AND task is executed by executing all of its sub-
tasks according to a some set of specified temporal constraints. An OR task is executed
by executing one of its subtasks. Figure 2 gives an example of such an abstract task.
Imagine a rover that wants to make an early morning trip from point A to point B on our
example map. During this trip the sun slowly rises above the horizon giving the rover the
ability to progressively use soak rays tasks to provide more solar power to motors in the
wheels. In addition to collecting photons, the morning traverse moves the rover, and the
resultant go tasks require path dependent amounts of power. While a rover traveling from
pointA to pointB can take any number of paths, the shortest three involve following one,
two, or three steps.

2.2 Summary Information

An abstract task’s state variable summary information includes elements for pre-, in-,
and postconditions. Summary preconditions are conditions that must be met by the initial
state or previous external tasks in order for a task to decompose and execute successfully,
and a task’s summary postconditions are the effects of its decomposition’s execution
that are not undone internally. We use summary inconditions for those conditions that
are required or asserted in the task’s decomposition during the interval of execution.
All summary conditions are used to reason about how state variables are affected while
performing an abstract task, and they have two orthogonal types of modalities:

– must or may indicates that a condition holds in all or some decompositions of the abstract
task respectively and

– first, last, sometimes, or always indicates when a condition holds in the task’s execution
interval.

1 It is trivial to extend the algorithms in this paper to handle state and resource constraints specified
for abstract tasks.

48

For instance, the move(A;B) task in our example has a must; first(position=A)
summary precondition and a must; last(position=B) postcondition because all decom-
positions move the rover from A to B. Since the move(A;B) task decomposes into one
of several paths, it has summary inconditions of the formmay, sometimes(position=i),
where i is 1, 2 or 3. State summary conditions are formalized in [2].

Extending summary information to include metric resources involves defining a new
representation and algorithm for summarization. A summarized resource usage consists
of ranges of potential resource usage amounts during and after performing an abstract
task, and we represent this summary information using the structure

hlocal min range; local max range; persist rangei;

where the resource’s local usage occurs within the task’s execution, and the persistent
usage represents the usage that lasts after the task terminates for depletable resources.

The usage ranges capture the multiple possible usage profiles of an task with multiple
decomposition choices and timing choices among loosely constrained subtasks. For ex-
ample, the high path task has a h[4; 4]; [6; 6]; [0; 0]i summary power use over a 40 minute
interval. In this case the ranges are single points due to no uncertainty – the task simply
uses 4 watts for 15 minutes followed by 6 watts for 25 minutes. The move(A;B) pro-
vides a slightly more complex example due to its decompositional uncertainty. This task
has a h[0; 4]; [4; 6]; [0; 0]i summary power use over a 50 minute interval. In both cases the
persist range is [0; 0] because power is a nondepletable resource.

While a summary resource usage structure has only one range for persistent usage
of a resource, it has ranges for both the minimum and maximum local usage because
resources can have minimum as well as maximum usage limits, and we want to detect
whether a conflict occurs from violating either of these limits. As an example of reason-
ing with resource usage summaries, suppose that only 3 watts of power were available
during a move(A;B) task. Given the [4; 6] local max range, we know that there is
an unresolvable problem without decomposing further. Raising the available power to 4
watts makes the task executable depending on how it gets decomposed and scheduled,
and raising to 6 or more watts makes the task executable for all possible decompositions.

3 Resource Summarization Algorithm

The state summarization algorithm [2] recursively propagates summary conditions up-
wards from an AND/OR tree’s leaves, and the algorithm for resource summarization
takes the same approach. Starting at the leaves, we find primitive tasks that use constant
amounts of a resource. The resource summary of a task using x units of a resource is
h[x,x],[x,x],[0,0]i or h[x,x],[x,x],[x,x]i over the task’s duration for nondepletable or de-
pletable resources respectively.

Moving up the AND/OR tree we either come to an AND or an OR branch. For an
OR branch the combined summary usage comes from the OR computation

h[minc2children(lb(local min range(c)));
maxc2children(ub(local min range(c)))];
[minc2children(lb(local max range(c)));
maxc2children(ub(local max range(c)))];
[minc2children(lb(persist range(c)));
maxc2children(ub(persist range(c)))]i;

where lb() and ub() extract the lower bound and upper bound of a range respectively. The
children denote the branch’s children with their durations extended to the length of the

49

longest child. This duration extension alters a child’s resource summary information be-
cause the child’s usage profile has a 0 resource usage during the extension. For instance,
when we determine the resource usage for move(A;B) we combine two 40 minute tasks
with a 50 minute task. The resulting summary information is for a 50 minute abstract
task whose profile might have a zero watt power usage for 10 minutes. This extension
is why move(A;B) has a [0; 4] for a local min range instead of [3; 4]. Planners that
reason about variable durations could use [3; 4] for a duration ranging from 40 to 50.

Computing an AND branch’s summary information is a bit more complicated due to
timing choices among loosely constrained subtasks. Our take x path examples illustrate
the simplest subcase, where subtasks are tightly constrained to execute serially. Here
profiles are appended together, and the resulting summary usage information comes form
the SERIAL-AND computation

h[minc2children(lb(local min range(c)) +�
pre

lb
(c));

minc2children(ub(local min range(c)) +�
pre

ub
(c))];

[maxc2children(lb(local max range(c)) +�
pre

lb
(c));

maxc2children(ub(local max range(c)) +�
pre

ub
(c))];

[�c2children(lb(persist range(c)));
�c2children(ub(persist range(c)))]i;

where�pre

lb
(c) and�pre

ub
(c) are the respective lower and upper bounds on the cumulative

persistent usages of children that execute before c. These computations have the same
form as the � computations for the final persist range.

The case where all subtasks execute in parallel and have identical durations is slightly
simpler. Here the usage profiles add together, and the branch’s resultant summary usage
comes from the PARALLEL-AND computation

h[�c2children(lb(local min range(c)));
maxc2children(ub(local min range(c)) +�

non

ub (c))];
[minc2children(lb(local max range(c)) +�

non

lb (c));
�c2children(ub(local max range(c)))];
[�c2children(lb(persist range(c)));
�c2children(ub(persist range(c)))]i;

where�non

ub
(c) and�non

lb
(c) are the respective sums of local max range upper bounds

and local min range lower bounds for all children except c.
To handle AND tasks with loose temporal constraints, we consider all legal orderings

of child task endpoints. For example, in our rover’s early morning tasks, there are three
serial solar energy collection subtasks running in parallel with a subtask to drive to loca-
tion B. Figure 3 shows one possible ordering of the subtask endpoints, which breaks the
move(A;B) into three pieces, and two of the soak rays children in half. Given an order-
ing, we can (1) use the endpoints of the children to determine subintervals, (2) compute
summary information for each child task/subinterval combination, (3) combine the par-
allel subinterval summaries using the PARALLEL-AND computation, and then (4) chain
the subintervals together using the SERIAL-AND computation. Finally, the AND task’s
summary is computed by combining the summaries for all possible orderings using an
OR computation.

Here we describe how step (2) generates different summary resource usages for the
subintervals of a child task. A child task with summary resource usage h[a,b],[c,d],[e,f]i
contributes one of two summary resource usages to each intersecting subinterval 2:

h[a; b]; [c; d]; [0; 0]i; h[a; d]; [a; d]; [0; 0]i:

2 For summary resource usages of the last interval intersecting the child task, we replace [0; 0]
with [e; f] in the persist range.

50

soak rays

<[0,4],[4,6],[0,0]>

move(A,B)

soak rays

soak rays

<[-6,-6],[-6,-6],[0,0]>
<[-5,-5],[-5,-5],[0,0]>

<[-4,-4],[-4,-4],[0,0]>

Fig. 3. Possible task ordering for a rover’s morning activities, with resulting subintervals.

While the first usage has the tighter [a; b]; [c; d] local ranges, the second has looser
[a; d]; [a; d] local ranges. Since the b and c bounds only apply to the subintervals con-
taining the subtask’s minimum and maximum usages, the tighter ranges apply to one of
a subtask’s intersecting subintervals. While the minimum and maximum usages may not
occur in the same subinterval, symmetry arguments let us connect them in our computa-
tion. Thus one subinterval has tighter local ranges and all other intersecting subintervals
get the looser local ranges, and the extra complexity comes from having to investigate all
subtask/subinterval assignment options. For instance, there are three subintervals inter-
secting move(A;B) in Figure 3, and three different assignments of summary resource
usages to the subintervals: placing [0; 4]; [4; 6] in one subinterval with [0; 6]; [0; 6] in the
other two. These placement options result in a subtask with n subintervals having n
possible subinterval assignments. So if there are m child tasks each with n alternate
assignments, then there are nm combinations of potential subtask/subinterval summary
resource usage assignments. Thus propagating summary information through an AND
branch is exponential in the number of subtasks with multiple internal subintervals. How-
ever since the number of subtasks is controlled by the domain modeler and is usually
bounded by a constant, this computation is tractable. In addition, summary information
can often be derived offline for a domain. The propagation algorithm takes on the form:

– For each consistent ordering of endpoints:
� For each consistent subtask/subinterval summary usage assignment:

� Use PARALLEL-AND computations to combine subtask/subinterval sum-
mary usages by subinterval.

� Use a SERIAL-AND computation on the subintervals’ combined summary
usages to get a consistent summary usage.

– Use OR computation to combine all consistent summary usages to get AND task’s
summary usage.

4 Using Summary Information

In this section, we describe techniques for using summary information in local search
planners to reason at abstract levels effectively and discuss the complexity advantages.
Reasoning about abstract plan operators using summary information can result in expo-
nential planning performance gains for backtracking hierarchical planners [3]. In itera-
tive repair planning, a technique called aggregation that involves scheduling hierarchies
of tasks similarly outperforms the movement of tasks individually [8]. But, can summary
information be used in an iterative repair planner to improve performance when aggre-
gation is already used? We demonstrate that summarized state and resource constraints
makes exponential improvements by collapsing constraints at abstract levels. First, we
describe how we use aggregation and summary information to schedule tasks within an

51

iterative repair planner. Next, we analyze the complexity of moving abstract and detailed
tasks using aggregation and summary information. Then we describe how a heuristic
iterative repair planner can exploit summary information.

4.1 Aggregation and Summary Information

While HTN planners commonly take a generative least commitment approach to problem
solving, research in the OR community illustrates that a simple local search is surpris-
ingly effective [12]. Heuristic iterative repair planning uses a local search to generate a
plan. It starts with an initial flawed plan and iteratively chooses a flaw, chooses a repair
method, and changes the plan by applying the method. Unlike generative planning, the
local search never backtracks. Since taking a random walk through a large space of plans
is inefficient, heuristics guide the choices by determining the probability distributions for
each choice. We build on this approach to planning by using the ASPEN planner [1].

Moving tasks is a central scheduling operation in iterative repair planners. A planner
can more effectively schedule tasks by moving related groups of tasks to preserve con-
straints among them. Hierarchical task representations are a common way of representing
these groups and their constraints. Aggregation involves moving a fully detailed abstract
task hierarchy while preserving the temporal ordering constraints among the subtasks.
Moving individual tasks independent of their siblings and subtasks is shown to be much
less efficient [8]. Valid placements of the task hierarchy in the schedule are computed
from the state and resource usage profile for the hierarchy. This profile represents one
instantiation of the decomposition and temporal ordering of the abstract task’s hierarchy.

A summarized state or resource usage represents all potential profiles of an abstract
task before it is decomposed. Our approach involves reasoning about summarized con-
straints in order to schedule abstract tasks before they are decomposed. Scheduling an
abstract task is computationally cheaper than scheduling the task’s hierarchy using ag-
gregation when the summarized constraints more compactly represent the constraint pro-
files of the hierarchy. This improves the overall performance when the planner/scheduler
resolves conflicts and finds solutions at abstract levels before fully decomposing tasks.

4.2 Complexity Analysis

To move a hierarchy of tasks using aggregation, valid intervals must be computed for each
resource variable affected by the hierarchy. 3 These valid intervals are intersected for the
valid placements for the abstract tasks and their children. The complexity of computing
the set of valid intervals for a resource is O(cC) where c is the number of constraints
(usages) an abstract task has with its children for the variable, and C is the number of
constraints of other tasks in the schedule on the variable [8]. If there are n similar task
hierarchies in the entire schedule, then C = (n� 1)c, and the complexity of computing
valid intervals is O(nc2). But this computation is done for each of v resource variables
(often constant for a domain), so moving a task will have a complexity of O(vnc 2).

The summary information of an abstract task represents all of the constraints of
its children, but if the children share constraints over the same resource, this informa-
tion is collapsed into a single summary resource usage in the abstract task. Therefore,
when moving an abstract task, the number of different constraints involved may be far
fewer depending on the domain. If the scheduler is trying to place a summarized abstract

3 The analysis also applies to state constraints, but we restrict our discussion to resource usage
constraints for simplicity.

52

task among other summarized tasks, the computation of valid placement intervals can be
greatly reduced because the c in O(vnc2) is smaller. We now consider two extreme cases
where constraints can be fully collapsed and where they cannot be collapsed at all.

In the case that all tasks in a hierarchy have constraints on the same resource, the
number of constraints in a hierarchy is O(bd) for a hierarchy of depth d and branching
factor (number of child tasks per parent) b. In aggregation, where hierarchies are fully
detailed first, this means that the complexity of moving an task is O(vnb2d) because
c = O(bd). Now consider using aggregation for moving a partially expanded hierarchy
where the leaves are summarized abstract tasks. If all hierarchies in the schedule are
decomposed to level i, there are O(bi) tasks in a hierarchy, each with one summarized
constraint representing those of all of the yet undetailed subtasks beneath it for each
constraint variable. So c = O(bi), and the complexity of moving the task is O(vnb2i).
Thus, moving an abstract task using summary information can be a factor of O(b 2(d�i))
times faster than for aggregation.

The other extreme is when all of the tasks place constraints on different variables.
In this case, c = 1 because any hierarchy can only have one constraint per variable.
Fully detailed hierarchies contain v = O(bd) different variables, so the complexity of
moving a task in this case is O(nbd). If moving a summarized abstract task where all
tasks in the schedule are decomposed to level i, v is the same because the abstract task
summarizes all constraints for each subtask in the hierarchy beneath it, and each of those
constraints are on different variables such that no constraints combine when summarized.
Thus, the complexity for moving a partially expanded hierarchy is the same as for a fully
expanded one. Experiments in Section 5 exhibit great improvement for cases when tasks
have constraints over common resource variables.

Along another dimension, scheduling summarized tasks is exponentially faster be-
cause there are fewer temporal constraints among higher level tasks. When task hierar-
chies are moved using aggregation, all of the local temporal constraints are preserved.
However, there are not always valid intervals to move the entire hierarchy. Even so, the
scheduler may be able to move less constraining lower level tasks to resolve the conflict.
In this case, temporal constraints may be violated among the moved task’s parent and sib-
lings. The scheduler can then move and/or adjust the durations of the parent and siblings
to resolve the conflicts, but these movements can affect higher level temporal constraints
or even produce other conflicts. At a depth level i in a hierarchy with decompositions
branching with a factor b, the task movement can affect b i siblings in the worst case and
produce a number of conflicts exponential to the depth of the task. Thus, if all conflicts
can be resolved at an abstract level i, O(bd�i) scheduling operations may be avoided. In
Section 5, empirical data shows the exponential growth of computation with respect to
the depth at which ASPEN finds solutions.

Other complexity analyses have shown that under certain restrictions different forms
of hierarchical problem solving can reduce the size of the search space by an exponential
factor [10, 9]. Basically, these restrictions are that an algorithm never needs to backtrack
from lower levels to higher levels in the problem. In other words, subproblems introduced
in different branches of the hierarchy do not interact. We do not make this assumption
for our problems. However, the speedup described above does assume that the hierarchies
need not be fully expanded to find solutions.

4.3 Decomposition Heuristics for Iterative Repair

Despite this optimistic complexity, reasoning about summarized constraints only trans-
lates to better performance if the movement of summarized tasks resolves conflicts and

53

advances the search toward a solution. There may be no way to resolve conflicts among
abstract tasks without decomposing them into more detailed ones. So when should sum-
mary information be used to reason about abstract tasks, and when and how should they
be decomposed? Here, we describe techniques for reasoning about summary information
as abstract tasks are detailed.

We explored two approaches that reason about tasks from the top-level of abstraction
down in the manner described in [3]. Initially, the planner only reasons about the sum-
mary information of fully abstracted tasks. As the planner manipulates the schedule, tasks
are gradually decomposed to open up new opportunities for resolving conflicts using the
more detailed child tasks. One strategy (that we will refer to as level-decomposition) is
to interleave repair with decomposition as separate steps. Step 1) The planner repairs the
current schedule until the number of conflicts cannot be reduced. Step 2) It decomposes
all abstract tasks one level down and returns to Step 1. By only spending enough time
at a particular level of expansion that appears effective, the planner attempts to find the
highest decomposition level where solutions exist without wasting time at any level.

Another approach is to use decomposition as one of the repair methods that can be
applied to a conflict so that the planner gradually decomposes conflicting tasks. This
strategy tends to decompose the tasks involved in more conflicts since any task involved
in a conflict is potentially expanded when the conflict is repaired. The idea is that the
scheduler can break overconstrained tasks into smaller pieces to offer more flexibility in
rooting out the conflicts. This resembles the EMTF (expand-most-threats-first) [3] heuris-
tic that expands (decomposes) tasks involved in more conflicts before others. (Thus, we
later will refer to this heuristic as EMTF.) This heuristic avoids unnecessary reasoning
about the details of non-conflicting tasks. This is similar to a most-constrained variable
heuristic often employed in constraint satisfaction problems.

Another heuristic for improving planning performance prefers decomposition choices
that lead to fewer conflicts. In effect, this is a least-constraining value heuristic used in
constraint satisfaction approaches. Using summary information, the planner can test each
child task by decomposing to the child and replacing the parent’s summarized constraints
that summarize the children with the particular child’s summarized constraints. For each
child, the number of conflicts in the schedule are counted, and the child creating the
fewest conflicts is chosen.4 This is the fewest-threats-first (FTF) heuristic that is shown
to be effective in pruning the search space in a backtracking planner [3]. Likewise, the
experiments in Section 5 show similar performance improvements.

5 Empirical Comparisons

The experiments we describe here show that summary information improves perfor-
mance significantly when tasks within the same hierarchy have constraints over the same
resource, and solutions are found at some level of abstraction. At the same time, we find
cases where abstract reasoning incurs significant overhead when solutions are only found
at deeper levels. However, in domains where decomposition choices are critical, we show
that this overhead is insignificant because the FTF heuristic finds solutions at deeper
levels with better performance. These experiments also show that the EMTF heuristic
outperforms level-decomposition for certain decomposition rates. In addition, we show
that the time to find a solution increases dramatically with the depth where solutions are
found, supporting the analysis at the end of Section 4.2.

4 Or, in stochastic planners like ASPEN, the children are chosen with probability decreasing with
their respective number of conflicts.

54

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU Seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

Fig. 4. Plots for the no channel, mixed, and channel only domains

The domain for our problems expands the single rover problem described in earlier
sections to a team of rovers that must resolve conflicts over shared resources. Paths be-
tween waypoints are assigned random capacities such that either one, two, or three rovers
can traverse a path simultaneously; only one rover can be at any waypoint; and rovers
may not traverse paths in opposite directions. In addition, rovers must communicate with
the lander for telemetry using a shared channel of fixed bandwidth. Depending on the
terrain, the required bandwidth varies. 80 problems were generated for two to five rovers,
three to six observation locations per rover, and 9 to 105 waypoints. Schedules ranged
from 180 to 1300 tasks. Note that we use a prototype interface for summary information,
and some of ASPEN’s optimized scheduling techniques could not be used.

We compare ASPEN using aggregation with and without summarization for three
variations of the domain. The use of summary information includes the EMTF and FTF
decomposition heuristics. One domain excludes the communications channel resource
(no channel); one excludes the path capacity restrictions (channel only); and the other
includes all mentioned resources mixed). Since all of the movement tasks reserve the
channel resource, we expect greater improvement in performance when using summary
information according to the complexity analyses in the previous section. Tasks within
a rover’s hierarchy rarely place constraints on other variables more than once, so the no
channel domain corresponds to the case where summarization collapses no constraints.

Figure 4 (top) exhibits two distributions of problems for the no channel domain. In
most of the cases (points along the y-axis), ASPEN with summary information finds a
solution quickly at some level of abstraction. However, in many cases, summary infor-
mation performs notably worse (points along the x-axis). We find that for these prob-
lems finding a solution requires the planner to dig deep into the rovers’ hierarchies, and
once it decomposes the hierarchies to these levels, the difference in the additional time
to find a solution between the two approaches is negligible Thus, the time spent reason-
ing about summary information at higher levels incurred unnecessary overhead. Previous
work shows that this overhead is rarely significant in backtracking planners because sum-

55

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Average Depth of Hierarchies in Solution

S
u

m
m

ar
y

In
fo

rm
at

io
n

 +
 A

g
g

re
g

at
io

n

C
P

U
 s

ec
o

n
d

s

Fig. 5. CPU time for solutions found at varying depths.

mary information can prune inconsistent search spaces at abstract levels [3]. However,
in non-backtracking planners like ASPEN, the only opportunity we found to prune the
search space at abstract levels was using the FTF heuristic to avoid greater numbers of
conflicts in particular branches. Later, we will explain why FTF is not helpful for this
domain but very effective in a modified domain.

Figure 4 (left) shows significant improvement for summary information in the mixed
domain compared to the no channel domain. Adding the channel resource rarely affected
the use of summary information because the collapse in summary constraints incurred
insignificant additional complexity. However, the channel resource made the scheduling
task noticeably more difficult for ASPEN when not using summary information. In the
channel only domain (Figure 4 right), summary information finds solutions at the abstract
level almost immediately, but the problems are still complicated when ASPEN does not
use summary information. These results support the complexity analysis in the previous
section that argues that summary information exponentially improves performance when
tasks within the same hierarchy make constraints over the same resource and solutions
are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN using summary information for
the mixed domain for the depths at which the solutions are found. The depths are average
depths of leaf tasks in partially expanded hierarchies. The CPU time increases dramati-
cally for solutions found at greater depths, supporting our claim that finding a solution at
more abstract levels is exponentially easier.

For the described domain, choosing different paths to an observation location usually
does not make a significant difference in the number of conflicts encountered because if
the rovers cross paths, all path choices will still lead to conflict. We created a new set of
problems where obstacles force the rovers to take paths through corridors that have no
connection to others paths. For these problems, path choices always lead down a different
corridor to get to the target location, so there is usually a path that avoids a conflict and a
path that causes one. The planner using the FTF heuristic dominates the planner choosing
decompositions randomly for all but two problems (Figure 6 left).

Figure 6 (right) shows the performance of EMTF vs. level decomposition for differ-
ent rates of decomposition for three problems selected from the set. The plotted points
are averages over ten runs for each problem. Depending on the choice of rate of de-
composition (the probability that a task will decompose when a conflict is encountered),
performance varies significantly. However, the best decomposition rate can vary from
problem to problem making it potentially difficult for the domain expert to choose. Our
future work will include investigating the relation of decomposition rates to performance
based on problem structure.5

5 For other experiments, we used a decomposition rate of 20%.

56

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + FTF CPU Seconds

S
u

m
m

ar
y

In
fo

rm
at

io
n

C

P
U

 S
ec

o
n

d
s

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

C
P

U
 s

ec
o

n
d

s

A
A level-decomp
B
B level decomp
C
C level decomp

Fig. 6. Performance using FTF and EMTF vs. level-decomposition heuristics.

6 Conclusions

Reasoning about abstract constraints exponentially accelerates finding schedules when
constraints collapse during summarization, and solutions at some level of abstraction can
be found. Similar speedups occur when decomposition branches result in varied num-
bers of conflicts. The offline algorithm for summarizing metric resource usage makes
these performance gains available for a larger set of expressive planners and schedulers.
We have shown how these performance advantages can improve ASPEN’s effectiveness
when scheduling the tasks of multiple spacecraft. The use of summary information also
enables a planner to preserve decomposition choices that robust execution systems can
use to handle some degree of uncertainty and failure. Our future work includes evalu-
ating the tradeoffs of optimizing plan quality using this approach as well as developing
protocols to allow multiple spacecraft planners to coordinate their tasks asynchronously
during execution.

References

1. S. Chien, G. Rabideu, R. Knight, R. Sherwood, B Engelhardt, D. Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Automating space mission operations using
automated planning and scheduling. In Proc. SpaceOps, 2000.

2. B. Clement and E. Durfee. Theory for coordinating concurrent hierarchical planning agents.
In Proc. AAAI, pages 495–502, 1999.

3. B. Clement and E. Durfee. Performance of coordinating concurrent hierarchical planning
agents using summary information. In Proc. ATAL, pages 202–216, 2000.

4. K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-network planning. Technical
Report CS-TR-3239, University of Maryland, 1994.

5. J. Firby. Adaptive Execution in Complex Dynamic Domains. PhD thesis, Yale Univ., 1989.
6. M. Georgeff and A. Lansky. Procedural knowledge. Proc. IEEE, 74(10):1383–1398, Oct.

1986.
7. M. Huber. Jam: a bdi-theoretic mobile agent architecture. In Proc. Intl. Conf. Autonomous

Agents, pages 236–243, 1999.
8. R. Knight, G. Rabideau, and S. Chien. Computing valid intervals for collections of activities

with shared states and resources. In Proc. AIPS, pages 600–610, 2000.
9. C. Knoblock. Search reduction in hierarchical problem solving. In Proc. AAAI, pages 686–

691, 1991.
10. R. Korf. Planning as search: A quantitative approach. Artificial Intelligence, 33:65–88, 1987.
11. J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. Umprs: An implementation of the proce-

dural reasoning system for multirobot applications. In Proc. AIAA/NASA Conf. on Intelligent
Robotics in Field, Factory, Service, and Space, pages 842–849, March 1994.

12. Papadimitriou and Steiglitz. Combinatorial Optimization - Algorithms and Complexity. Dover
Publications New York, 1998.

57

A Satisficing Multiagent Plan Coordination Algorithm for
Dynamic Domains

[Extended Abstract]

Pradeep M. Pappachan
pmp@acm.org

Edmund H. Durfee
durfee@umich.edu

University of Michigan Artificial Intelligence Laboratory
1101 Beal Avenue, Ann Arbor, MI 48109-2110

1. INTRODUCTION
Coordinating agents need to anticipate how their individ-

ual actions will a�ect each other. Many proposed algorithms
such as [4] have taken to searching through the joint plan
space to �nd compatible action sequences before execution is
begun. In dynamic environments, \reactive" strategies have
been employed, where agents can wait until they must act
to decide on their actions. However, waiting to decide on
actions confounds coordination, since an action locally se-
lected by an agent now might be incompatible with actions
that others are taking or with actions that it or other agents
might later discover they need to take. Proposed solutions
include incremental merging of short term plans [3], insti-
tution of social laws [5], and exchanging post facto updates
about agents' decisions on the y and letting coordination
trail behind [2]. Since these approaches have either focused
on generating a single solution or pruning certain plan com-
binations from the solution space, they are not particularly
suited to agents which might have to select from several al-
ternative plans to achieve their tasks, since the approaches
rule out options in the solution space prior to execution.
In this paper, we propose an algorithm that coordinates
agents with hierarchical task networks (HTNs) by using a
least commitment strategy to incrementally construct a sat-
is�cing multiagent plan that respects task deadlines.

2. ASSUMPTIONS
In our approach, the coordination process is distributed

between the task agents (each of which has one or more tasks
to accomplish) and a coordinator agent. Each task agent
has a hierarchical task network (HTN) which it executes in
a top-down fashion by re�ning non-primitive operators to
executable primitive operators through a sequence of oper-
ator reductions. Each agent has its own preferences with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01, May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

respect to the reduction of non-primitive operators at run-
time. The coordinator, while not aware of these preferences,
has the ability to compute the coordination implications of
various sets of agent choices. We assume that the legal tem-
poral relations between conicting primitive operators from
di�erent HTNs are speci�ed in terms of relations in Allen's
interval algebra [1]. We also require that operator schemas
in the HTNs be instantiated prior to execution.

3. TASK CONFLICTS
Conicts among plan operators arise in multiagent set-

tings because an operator might undo the intended e�ects of
another, or trigger conditions that make another impossible
to execute. Conicts can also arise when certain operators
are executed concurrently. We say that operators U and
V can potentially conict under a temporal relation R, if
and only if, the pre-, in-, or post-conditions associated with
the two operators which are required to hold during over-
lapping time intervals (under the relational constraint R)
are logically inconsistent. The objective of the coordinator
is to temporally order agents' actions so as to preclude any
potential conicts between them.

4. TEMPORAL CONSTRAINT NETWORKS
The coordinator needs to keep track of the temporal or-

dering constraints between di�erent plan operators as var-
ious coordination commitments are made at runtime. The
primary data structure used for this purpose is the tempo-
ral constraint network. The coordinator is initially provided
with a list of primitive plan operators that can potentially
conict, and for each pair in the list, a vector of atomic in-
terval constraint relations under which the operators do not

conict. The temporal constraint network corresponding to
a set of primitive operators includes vertices for every op-
erator that can potentially conict with at least one other
operator in the set. The edges between the vertices are
labeled with the vectors of atomic relations provided. Op-
erators that are conict-free have no ordering constraints
relative to other operators, and are hence not represented
in the network. It should be noted that two operators with
incompatible contexts (necessary conditions for execution)
may appear in the network. However, the edges between all
such pairs of operators are omitted from the network.

58

goodelle
Text Box
Appendix F:

5. CONSTRAINT RELAXATION
Consider two non-primitive operators U and V with the

ordering constraint hU;V;RUV i, where RUV is the relational
ordering constraint between the operators. If operator U
precedes V (or vice versa), it is clear that the operators
in the reduction of U will precede those in the reduction
of V (or vice versa). However, for any other instance of
the temporal relation RUV , there might be several ways of
interleaving the operators in the reductions of U and V ,
corresponding to di�erent sets of ordering constraints, each
of which is temporally consistent with hU; V;RUV i and the
other temporal constraints represented in the network. The
process of relaxing a constraint hU; V;Ri consists of select-
ing a set of \new" ordering constraints hui; V; RuiV

i, (where
ui are operators in the reduction of U) that is consistent
with hU; V;RUV i, and simultaneously satis�es certain com-
pleteness conditions. When such a set is selected, there is
no \pressure" to satisfy the constraint hU; V;RUV i, and the
constraint hU; V;RUV i is said to be \relaxed". Each con-
straint relaxation step tightens the constraints between the
operators in the temporal constraint network, and forces
agents to temporally order their operators as they reduce
them in a top-down fashion.

6. COORDINATION ALGORITHM
The Online Iterative Constraint Relaxation (OICR) algo-

rithm takes the temporal constraint network for the plan co-
ordination problem, and the top-level plan operators of the
task agents as input. At the outset, the task agents block
only their top-level operators from reduction (or execution).
During the coordination process, several operators may in
turn be blocked by the coordinator as it resolves potential
conicts between them. The agents are free to reduce or ex-
ecute a blocked operator only when they receive an explicit
\unblock" message from the coordinator for that operator.
Initially, the coordinator sets feasible ordering constraints
on the top-level operators, or aborts if no such constraints
can be found. The top-level constraints are returned in a
list, L0 (say), which stores newly generated constraints dur-
ing each iteration of the algorithm. Another list L keeps
track of constraints that have not been relaxed.
If the list L0 is empty, it signi�es that there are no con-

straints between the top-level operators, and we are done;
otherwise, at least one pair of top-level operators has an
ordering constraint which needs to be relaxed. When a con-
straint needs to be relaxed, the coordinator requests the
reduction of one of the operators in the constraint. The ap-
propriate agent returns the reduction when it has decided
which reduction to apply.
During each iteration, when the coordinator receives the

reduction of some operator, U (say), that it had requested
earlier in order to relax a constraint, hU;V;Ri (say), in L, it
applies the relaxation procedure to generate new constraints
(between V and the operators in the reduction of U), which
are then added to L0. (In some cases the constraint can
be easily enforced by associating synchronization primitives
with the operators, as in the case of the temporal relation
Precedes and its inverse.) After the constraint has been re-
laxed, it can be deleted from the list L. The constraints in
L0 are then added to L, and they will be relaxed when, in
future iterations, the requested reductions corresponding to

those constraints arrive at the coordinator. Any operator in
L0 that is not in L is an operator that is not involved in any
unrelaxed constraint; such operators are unblocked, and the
task agents are free to reduce/execute them. The coordi-
nator terminates when no unrelaxed constraints remain in
L. At this point, the agents are fully coordinated, and if
they execute their plans (as parts of the complete multia-
gent plan orchestrated by the coordinator), they will be able
to achieve their goals.
In many real-world domains, it is necessary to look for

coordinated plans which satisfy individual task deadlines.
To generate satis�cing multiagent plans that obey this re-
quirement, the constraint relaxation procedure must only
accept those sets of constraints that satisfy task deadlines.
Given an HTN, the durations of primitive operators in the
HTN, and a deadline for the top-level plan, we can regress
the deadline through the primitive operators in the HTN to
obtain deadlines for each primitive operator. We can also
easily compute the earliest completion times for the prim-
itives in the network. Given a pair of primitive operators
(with deadlines), we can then compute for any atomic in-
terval constraint, the change in the completion times of the
operators induced by the constraint. This change in com-
pletion times is computed for all pairs of primitives in the
network, and propagated through the network until the com-
pletion times of the primitives attain quiescence. If during
this process, any primitive operator deadline is missed, we
reject the set of constraints; otherwise, we can accept the
constraints with the guarantee that they will not violate the
deadlines.

7. EVALUATION
The OICR algorithm interleaves coordination with task

execution, since operators that are not blocked can be re-
duced (or executed) while the coordinator is relaxing con-
straints. The coordinator does not have to examine entire
HTNs before coordinating all the agents; it might terminate
coordination at any level in the hierarchy. The coordination
algorithm is provably sound, but not complete. The OICR
algorithm has been implemented, and initial experiments in
a peace-keeping coalition domain have shown that it can be
used to eÆciently coordinate small groups of agents with
complex hierarchical task networks.

8. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal

intervals. Communications of the ACM,
26(11):832{843, 1983.

[2] E. H. Durfee and V. R. Lesser. Partial global planning:
A coordination framework for distributed hypothesis
formation. IEEE Transactions of Systems, Man and

Cybernetics, 21(5):1167{1183, 1991.

[3] E. Ephrati and J. S. Rosenschein. Divide and conquer
in multi-agent planning. In Proceedings of AAAI, pages
375{380, 1994.

[4] M. P. George�. Communication and interaction in
multiagent planning. In Proceedings of AAAI, pages
125{129, 1983.

[5] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for arti�cial societies. In Proceedings

of AAAI, pages 276{281, 1992.

59

Discovering and Exploiting Synergy Between Hierarchical
Planning Agents

Jeffrey S. Cox
jeffcox@umich.edu

Edmund H. Durfee
durfee@umich.edu

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109

ABSTRACT
It is critical for agents in a multiagent environment to avoid
interfering with each other when carrying out their tasks.
However, to avoid execution inefficiencies, they also should
capitalize on cooperative opportunities. In state oriented
domains [14], identifying overlapping effects between agents’
plans enables some agents to leave some tasks to others,
thereby reducing the cost of execution and improving the
overall efficiency of the multiagent system. This is what we
term synergy. In this paper, we define criteria for finding
a certain type of synergy involving agents with overlapping
goals. We also develop algorithms for discovering this syn-
ergy between planning agents that exploit hierarchical plan
representations. Our results show that our approach not
only can reduce the costs of finding synergies compared to
non-hierarchical strategies, but can also find synergies that
might otherwise be missed.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Coordination of multiple agents, Multiagent planning, Plan
merging, Synergy

1. INTRODUCTION
When cooperative agents must operate in a common mul-

tiagent environment, often the first task is to ensure that
each agent will not cause delay or harm to other agents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

Indeed, considerable research and effort has gone into de-
veloping multiagent planning systems to allow agents to an-
ticipate and avoid unintended negative interactions, or con-
flicts [2, 9, 10, 13].

In addition to resolving conflicts, many researchers [12,
17, 18], have also explored how agents can identify and ex-
ploit positive interactions, or synergies, between their plans.
Opportunities for multiagent plan synergy enable agents to
reduce the effort they exert to achieve their goals. In par-
ticular, synergies exist when agents achieve overlapping or
subsuming effects when trying to achieve their goals. In this
case, the agents with the subsuming and subsumed plan
steps can “merge” their plans (effectively allowing one to
drop some of its plan steps in its plan) to reduce their com-
bined cost of execution in state oriented domains [14].

An example of interacting agents would be two helicopter
agents, operating on a different chain of commands, tasked
to scout overlapping regions. There may be significant risks
of collision, but these can be overcome by adequate conflict
resolution planning. On the other hand, identifying overlap-
ping plans (e.g., scouting the same locations) and merging
certain duplicated tasks would allow each helicopter to ac-
complish its goals more efficiently.

Unfortunately, searching for synergies between agents can
be as computationally costly as searching for conflicts. Fur-
thermore, unlike conflict resolution, exploiting synergies is
not a requirement for correct agent execution. Thus, while
the payoff for discovering and resolving conflicts (e.g., he-
licopter crashes) may easily justify the often high costs of
coordination, the benefits of finding and exploiting synergies
are less often worth the costs. For example, the scouting he-
licopters might perform tasks for each other, cutting down
on the overall flight times and fuel usages, but their mis-
sions might be delayed while spending time searching for
these more cost-effective plans. Finding ways to reduce the
cost of discovering synergies is thus of critical importance if
such synergies are to be useful in practice.

Toward this end, we describe in this paper a novel ap-
proach to synergy search, the significance of which is the
exploitation of hierarchical structures that makes the search
tractable without having to predefine the opportunities for
synergy. We show experimentally that our approach can find
simple synergies between agents’ plans more quickly than
an approach that does not exploit plan hierarchies. We also
show that the use of plan hierarchies allows our method
to find these synergies between more abstract plan steps
that would be overlooked with a “flat” (non-hierarchical)

60

goodelle
Text Box
Appendix G:

approach, a crucial capability in applications where agents
might share higher-level goals but not detailed capabilities.

We organize our paper as follows: In the next section,
we summarize some of the concepts in plan merging, hier-
archical plan representation, and multiagent planning that
we use as a foundation for our approach. Section 3 details
our new Synergy Algorithm, which is capable of identify-
ing and exploiting plan synergy relationships between dif-
ferent hierarchical planning agents. In Section 4, we present
some of our initial experimental results showing the advan-
tages of our algorithm in terms of the main metrics we have
laid out: that it is faster than a non-hierarchical approach
at finding synergies, and that it can find synergies that a
non-hierarchical approach will miss. Section 5 presents our
conclusions and future directions of research.

2. RELATED WORK
Single agent plan merging has a rich history. Many re-

searchers have explored methods for preventing or exploit-
ing redundancies in the plans of a single agent, either dur-
ing the actual planning process itself or when integrating
separate sub-plans. One commonly-used technique in clas-
sical planning, step-reuse, tries to achieve goal conditions by
preferentially introducing causal links between the effects of
existing plan steps and unachieved goal conditions. This
strategy avoids introducing unnecessary plan steps into a
plan.

More recent work by Yang [18] has explored problems in
which an agent has constructed several independent plans
for separate subgoals, and now must form a single plan by
merging the plans together. Yang’s formal definition of plan
merging states that a set (subject to some grouping restric-
tions) of plan steps Σ is merge-able with a plan step µ (mean-
ing µ can replace Σ in the plan) if the union of preconditions
of Σ subsume those of µ, the postconditions of µ subsume
the useful effects of Σ, and the cost of µ is less than the
cost of Σ. Yang states that a group of plan steps’ use-

ful effects are the effects that establish conditions that are
preconditions of other plan steps in the overall plan. Yang’s
definition is flexible, in that it allows for any single plan step
in a partial order plan to merge with any possible subset.
However, Yang’s merging criterion suffers because there are
not always intuitive groupings of plan steps in an arbitrary
partial-order plan, and that the number of possible group-
ings is quite large, making his optimal merging algorithm
complex, and his approximate algorithm incomplete.

Horty and Pollack’s [12] research claims that an agent
should not evaluate the cost of taking on some new task
by weighing the cost of the task’s plan in isolation, but by
taking into account how the plan meshes with its existing
plans. Since the cost of a plan in context is often less than
it would be otherwise (thanks to plan step merges that “kill
two birds with one stone”), an agent may be able to adopt a
new task without incurring an unacceptable additional cost
of execution. However, Horty and Pollack only allow steps to
merge when they are the same action, disallowing different
actions with the same effects to merge.

Others have looked not at the single-agent plan merging
problem but at ways of coordinating the plans of multiple
agents in a multiagent domain [6, 11, 17]. Georgeff’s coor-
dination mechanism for agents acting in a shared environ-
ment imposes synchronization constraints between agents’
actions, to guarantee that their combined execution does

not cause conflicts [10]. An key element of Georgeff’s strat-
egy was to identify, through exhaustive pairwise compar-
isons, the subset of actions that could conflict, and group-
ing these together into critical regions to reduce the com-
binatorics of synchronization. More recently, Clement [2]
has examined this same problem of discovering and avoid-
ing potential inter-agent conflicts. He has shown how the
plan hierarchies of the individual agents can be exploited
to quickly prune uninvolved portions of agents’ plans away,
and to identify natural groupings of related plan steps, re-
sulting in an efficiency improvement over Georgeff’s work.
We borrow heavily from Clement’s ideas about the use of
plan hierarchies, but focus instead on finding and exploiting
positive interactions, rather than conflicts as he had done.

Multiagent techniques for coordinating positive interac-
tions include Partial Global Planning (PGP) [8] and Gener-
alized Partial Global Planning (GPGP) [5], which are also
concerned with practical issues in avoiding exchanges and
reasoning about irrelevant information. Subsequent work
on space and time abstraction as a method of coordinating
agents at abstract levels extends these ideas [7]. However,
none of these efforts deal with explicit subsumption relation-
ships between planning operators in agents’ plans.

Ephrati has extended Yang’s work on single agent plan
merging to the multi-agent context by farming out subgoals
of a single goal to different agents to solve and then integrate
their subplans into a joint, multi-agent plan [9]. Ephrati’s
system was able to handle both positive and negative in-
teractions between these subplans, but his approach suffers
from similar issues of search complexity and agent commit-
ment that Yang’s does.

Recently, De Weerdt and Witteveen [3] have developed an
algorithm for performing plan merging based on underuti-
lization of free resources. Their method takes advantage of a
rich plan and resource representation, but is limited to iden-
tifying and exploiting merges between grounded plans, and
does not benefit from any kind of hierarchical abstraction.

The rich literatures on plan merging, hierarchical plan-
ning, and multiagent plan coordination contribute valuable
components to our approach. The synthesis of these compo-
nents into our new approach to finding and exploiting mul-
tiagent plan synergies reaps the combination of benefits as
we seek to more efficiently search a richer space of synergies
than individual prior techniques.

3. DISCOVERING HIERARCHICAL PLAN
SYNERGY

In this section, we first characterize our plan representa-
tion and the summary information calculation process we
rely on, then describe the synergy criteria we use, and fi-
nally, describe our search algorithm capable of discovering
and exploiting these synergies. Unlike previous efforts, our
research offers an algorithmic solution to the problem of
merging plan steps based on subsumption relationships be-
tween the plan steps that satisfy both our desires for greater
efficiency and for discovery of merges between groups of plan
steps.

We point out that our approach can be used in either a
centralized or decentralized manner, depending on the un-
derlying organizational structure of the participating agents
(similar to the use of Meta-level Organizations in Partial
Global Planning [8]). If the agents are organized centrally

61

around a single authoritative agent, this single agent can
aggregate the plan information and use our algorithm to
reason about all possible synergy relationships between the
overall group of agents. In a more decentralized organiza-
tion, individual agents can share plan information with each
other, and each can use our algorithm to discover synergy
relationships between itself and other agents. In addition,
our algorithm functions irrespective of the degree of informa-
tion shared. Specifically, agents can share all or just part of
their plan hierarchies (giving them the opportunity to make
tradeoffs between increased efficiency and privacy), and our
algorithm will use as much information as is available to
discover opportunities for synergy. Unlike a conflict reso-
lution system, there is no true performance degradation if
agents do not reveal their entire plans. Rather, it is simply
less likely that synergies will be found. Finally, the algo-
rithm does not impose any single “solution” on the agents,
but instead iteratively returns alternative plan merges to
the agents as it discovers them. This allows the agents to
use whatever means they wish to reach agreement on which
solution to adopt.

3.1 Hierarchical Plan Representation
Briefly, a plan hierarchy is a hierarchy comprised of indi-

vidual plan steps; at the more abstract levels of the hierar-
chy, each plan step achieves more effects than a plan step at
a lower level, and the bottom of the hierarchy is composed
of primitive plan steps that are the operators that an agent
can directly execute. In essence, a plan hierarchy represents
a set of possible plans that all achieve the same overall goal.
Each possible complete refinement of a hierarchical plan rep-
resents one possible sequence of primitive plan steps capable
of achieving the overall goal of the hierarchical plan.

Route1

Visit D, E, FVisit A,B,C

Figure 1: Agent Scout1 Hierarchical Plan

Figure 1 shows a hierarchical plan from our helicopter do-
main, mentioned earlier. Agent Scout1’s plan is to first scout
regions A, B, and C in one sector, and then scout regions D,
E, and F in another sector. V isitA,B, C and V isitD, E, F
are abstract plan steps that refine to sets of primitive ac-
tions that, together, achieve Scout1’s goal of visiting all six
regions.

More formally, we define a hierarchical plan step p (an ele-
ment, or node, of a plan hierarchy) as a tuple {pre, in, post,
type, subplans, order, cost, duration}. pre, in, and post
are sets of conditions corresponding to the preconditions,
inconditions, and postconditions of the plan step. Precon-
ditions are conditions that must hold immediately prior to
the plan step’s execution, inconditions are conditions that
must or may hold during execution, and postconditions are
conditions that will hold immediately after execution (also
known as the effects of the plan step). Subplans is a set of
pointers to the sub-plan steps of the plan step. The type

of plan step p, type(p), has one of three values: primitive,
and, or or. An and plan step is a non-primitive plan step
that is accomplished by carrying out all of its subplans, and
an or plan step is a non-primitive plan step that is accom-
plished by carrying out any one of its subplans. A primitive
plan step has no subplans. Order is a set of temporal or-
dering constraints between the start or end time points of
plan steps in subplans [16]. Constraints can be of forms
before(a, x, b, y), after(a, x, b, y), and same(a, x, b, y) where
a and b are plan steps in subplans, and x and y are either
start or end (indicating whether the constraint is between
the start point or the end point of the plan step). Finally,
cost is a real number representing the cost of executing the
plan step, and duration is a real number representing the
time it will take the agent to execute its plan step. For a
non-primitive plan step p, the pre, in, post, duration and
cost values can be derived from p’s primitive subplans. A
specific method for deriving this information is described in
the next subsection.

3.2 Plan Condition Summarization
Reasoning about relations between abstract plan steps be-

tween different agents is more difficult than reasoning be-
tween primitive plan steps. This is the case because, un-
like primitive steps, abstract plan steps do not have explicit
condition information. This makes reasoning about rela-
tionships between abstract steps difficult, as it is hard to
determine the exact effects of a given abstract step. For

Route1 Route2

Visit D, E, F
Visit A,B,C Visit E, F Visit G, H

Subsumption

Figure 2: Scout1 and Scout2 Hierarchical Plans

example, consider the plans of Scout1 (Route1) and Scout2
(Route2) pictured in Figure 2. To know whether the effects
of plan step V isitD, E, F subsume V isitE,F (as is obvious
based on a typical interpretation of the plan names), a merg-
ing algorithm must have knowledge about the higher-level
effects of abstract plan steps, and not just the effects of the
primitive plan steps that compose the abstract step.

To solve this problem, we use an existing algorithm built
by Clement [2] that propagates such condition information
up the plan hierarchy, so that abstract steps derive their
precondition and postcondition information from their sub-
plans. Clement has used this technique to help resolve neg-
ative interactions between the hierarchical plans of multiple
agents at various levels of abstraction [2]. In our work, we
also recognize and exploit the fact that this summary infor-
mation can also be used to identify subsumption relation-
ships between abstract plan steps of different agents.

Clement propagates condition information from the leaves
of the hierarchy to the root plan step [2]. To represent this
summary information in the plan hierarchy once it is calcu-
lated, Clement makes a modification to the hierarchical plan
tuple we described previously. A plan condition c (c ∈ pre,
in or post) is now represented as a tuple, {l, existence}. l

62

is the condition literal, the actual condition that will hold,
and l(c) refers to the literal of condition c. The existence
of c can be must or may. If it is must, then c is called a
must condition because l holds for every successful plan ex-
ecution. If c is may, it is called a may condition because it
will hold for some possible executions, but is not guaranteed
to hold for every successful plan execution. This introduc-
tion of must and may conditions is necessary as, unlike a
primitive plan step whose conditions are always necessary
(i.e., always musts), an or abstract plan step will involve
different conditions depending on how it is refined.

3.3 The Top-Down Search Mechanism

3.3.1 Plan Step Merging Criteria
To discover possible plan step merges based on plan step

condition subsumption relationships, we have constructed
an algorithm (henceforth referred to as the Synergy Algo-
rithm, or SA) capable of finding and implementing plan step
merges between different agents’ hierarchical plans. This al-
gorithm is modeled after Clement’s algorithm in [2], though
we extend it in key ways that set our research apart from his
work. Our algorithm identifies pairs of plan steps that share
a subsumption relationship, and merges them by removing
the subsumed plan step and imposing additional constraints
to ensure correct execution. Though our algorithm currently
finds only pairwise merges, if three or more agents can merge
plan steps such that only one of them needs to execute a
plan step to satisfy them all, the SA can find such a merge
through repeated discovery and adoption of pairwise merges
in the same run of the algorithm. This allows the algorithm
to coordinate any number of agents at a time, though it does
not support all types of plan step reallocations [15].

The SA determines if any two plan steps can merge by
first calculating the summary information for each of the
hierarchical plans using Clement’s techniques [2], or rely on
the agents to perform this calculation themselves, before
submitting their plans to the agent(s) running the SA. The
SA then examines the summarized postconditions of the two
plan steps. If one of the two plan steps has a set of summa-
rized must postconditions that subsumes the summarized
must postconditions of the other plan step, then they can
be merged. Using Yang’s terminology, we say that the step
with the subsuming postconditions is the merged step [18].

More formally, we say that plan step pi can be the merged
step of another plan step pj (meaning pj replaces pi in the
new plan) if and only if

∀ci, ci ∈ post(pi) ∧ existence(ci) = must
⇒
∃cj , cj ∈ post(pj) ∧ existence(pj) = must ∧ l(ci) = l(cj)

This is a modified formulation of Yang’s original criteria for
plan step merging [18]. Yang’s criteria additionally require
that pre(pi) ⊂ pre(pj). We have relaxed this restriction.
Since the existing plans are assumed to be correct, pj does
not have to rely on the steps that were achieving condi-
tions to enable pi to execute. The removal of a plan step
pi may make other plan steps unnecessary, allowing them
to be dropped as well. Our mechanism currently does not
support the removal of these auxiliary actions, though we
address this issue in our future work section.

Intuitively, the SA should be able to merge on may con-
ditions as well as musts. By definition, may conditions at

a higher level of abstraction are must conditions at a lower
level of abstraction. Hence, to take advantage of possible
merges between may conditions, the SA will encounter these
upon further decomposing the hierarchy (by making selec-
tions at or branches) to the point that the may conditions
become must, and merges them at that point.

3.3.2 Algorithm Description
The search for plan merges is through the space of par-

tially expanded agent plan hierarchies. We term these par-
tial expansions frontiers; the search can thus also be charac-
terized as a search through the space of possible agent plan
frontiers.

Route2

Visit D, E, F

Visit A,B,C

Visit E, F

Visit G, H

Visit E, F

Visit G, H

Route1

Visit D, E, F

Visit A,B,C
Visit G, H

Route1
E(Route2)

E(Route1)

M(Visit D,E,F,
Visit E,F)

Figure 3: Algorithm State Expansion

Our SA implements a top-down search, because the algo-
rithm first explores the abstract levels of the agents’ hierar-
chies before expanding them to more primitive levels. This
means that the first plan step merges that are discovered
are between plan steps at an more abstract levels within
the agents’ hierarchies. The SA starts the search at a state
containing the top-level frontiers of all agents being coordi-
nated and expands downwards, iteratively returning states
in which new merges have been performed. States on the
search queue are ranked based on their overall cost, where
the overall cost of a search state is calculated by summing
the individual costs of the plan steps on each agent’s plan
frontier. As it finds states that have lower overall cost than
previously seen states, it returns them as candidate solutions
to the agents.

Route1 Route2

Visit D, E, F
Visit A,B,C Visit G, H

Figure 4: Scout1 and Scout2 Merged Plan Hierar-

chies

Figure 3 shows a series of expansions of the helicopter
agents’ plan hierarchies, representing one path through the
search space of frontiers. In the figure, the algorithm starts
at a state with the top-level frontiers of both agents (the
roots of their hierarchies) and expands down. It discovers

63

that plan steps V isitD, E, F and V isitE, F can be merged,
and merges them to produce a new search state. Addition-
ally, an ordering constraint is added between the two plan
steps to be consistent with the ordering that Scout2 had
between its original actions. Figure 4 shows the solution
that would be added to the solutions list upon reaching this
state.

Begin Synergy Loop
If SearchQueue empty, exit
s = Pop(SearchQueue)
PruneFrontiers(s)
for each x in Frontiers, y in Frontiers
{

if postcondSubsume(x, y)
s2 = MergePlans(x, y, s)

else if poscondSubsume(y, x)
s2 = MergePlans(y, x, s)

if(!CycleDetect(s2))
PriorityInsert(s2, SearchQueue)

}
for each xin Frontiers

if !(x.primitive) & !(x.pruned)
{

s2 = ExpandPlan(x, s)
Insert(s2, SearchQueue)

}
if(Deconflict(s, solutions_list))

Insert(s, Solutions)
End Loop

MergePlans(a,b,s){
s2 = Copy(s)
Remove(b, s)
UpdatePartialOrderings(a, b, s)
Return s2 }

ExpandPlan(a, s){
s2 = Copy(s)
Remove(a, s)
Insert(a.subplans, s)
SubstPartialOrderings(a, a.subplans, s)
Return s2 }

Figure 5: Synergy Algorithm

Figure 5 outlines our Synergy Algorithm. A state in our
algorithm is a tuple {frontiers, orderings}. frontiers is
the current set of plan frontiers of the planning agents, and
orderings is the set of inter-agent and intra-agent ordering
constraints added by merging and expanding plans. The
algorithm begins by de-queueing the first search state from
the search queue. If the de-queued state is already on the
closed list of states, it has already been expanded, and so is
discarded and a new state is de-queued. The process stops
when there are no longer any states remaining on the queue
to be expanded.

If the dequeued state is not on the closed list, it is added to
the closed list and the algorithm generates successor states
created by merging plans. The MergePlans function tests
search states to determine if plan steps on one agent’s fron-
tier in frontiers could pairwise merge with plan steps on
any other agent’s frontier in frontiers. For each pair of
plan steps that can merge, the SA generates a new search
state in which the plan step that was subsumed is removed
from its frontier. After the merge, if the state is cheaper
than any previous candidate solution and is found to have

resolvable conflicts (more on this below), the algorithm adds
the state to its list of solutions.

The algorithm also generates successor states by expand-
ing existing plan steps. For each plan step of type and on
each frontier, it generates an additional search state in which
the plan step has been replaced on its frontier by its sub-
plans. For each plan step of type or on either frontier, the
algorithm generates multiple successor states by replacing
the plan steps by each of its subplans. The expansion of or
plan steps allows for potential merging of children of an or
plan step by committing the executing agent to a particular
subplan of that or plan.

A key to understanding our search process is to under-
stand that the iterative discovery of plan steps to merge
between agents’ frontiers is integrated in the actual search
process. That is, new states in the search are generated
both by expanding existing plan steps on the frontiers and
by merging two plan steps to generate a new state with fron-
tiers created by the merge of two plan steps.

3.4 Plan Frontier Pruning
The space of possible frontiers across all agents is exceed-

ingly large. The number of frontiers possible in a single,
balanced hierarchy with a uniform branching factor B and
all and plan steps can be calculated using the following re-
cursion, where d is the depth of the tree:

Frontiers(d) = Frontiers(d − 1)B + 1 (1)

Thus, the worst-case complexity of the search space of pos-
sible combinations of agent plan frontiers is quite large.
Clearly, any search algorithm exploring this space (like the
search our SA implements) would like to avoid generating all
possible frontiers as it searches for plan step merges between
agents’ hierarchies.

To address this problem, we use frontier pruning to avoid
the unnecessary generation of search states. Before a de-
queued state generates its successor states based on the con-
tents of its frontiers, the SA checks each plan step on one
frontier against the plan steps on the other agent’s frontier
to determine if any of the plan step’s postconditions unify
with those of any plan step on the other frontier. Plan
steps that have no overlapping postconditions are marked
as pruned, meaning that the plan steps are never expanded
to generate new search states, since a plan step with no
overlapping postconditions will not have any children with
postconditions that overlap either.

In general, we assume that the SA will be applied in cases
where agents are acting nearly independently. Nearly in-
dependent agents’ plan hierarchies will predominantly af-
fect different aspects of the world, and thus will have many
pruned plan steps. This allows the SA to find the few ac-
tual merges much more quickly than it could otherwise. This
feature can significantly reduce the search time in problems
where there is little potential for synergy, as it reduces the
number of possible successor states that could be gener-
ated from a state. This process is similar to one used by
Clement [2], though while he prunes plan steps based on a
lack of conflict, we prune based on a lack of synergy.

3.5 Implementing Plan Merges
Once the SA has identified a pair of plan steps that can

merge, the solution it proposes must provide additional in-
formation besides specifying which agent should drop a par-

64

ticular (subsumed) plan step from its plan. The solution
should also constrain the involved agents to only executing
plans that can be refined based on the particular frontiers
for which the solution has been proposed, rather than from
any plans that could be refined from the root plan steps
of their original hierarchies. The following subsections de-
tail the other specifications that are essential for ensuring
correct execution after adopting a merge.

3.5.1 Maintaining Partial Ordering Correctness
Each time the SA merges two plan steps between different

agents’ hierarchies, it must modify the partial orderings over
agents’ plan steps in the frontier to implement this merge
and ensure that dependencies on the plan step being re-
moved are replaced with dependencies on the plan replacing
it. To modify the ordering constraints after merging two
steps a and b (where b is taking the place of a in the plan),
the SA must carry out three steps (Figure 6 illustrates this
concept graphically): first, the SA removes all ordering con-

d a

c

b

c

d

c

b
c

Before Merge(a,b)

After Merge(a,b)

Figure 6: Updating Temporal Constraints After a

Merge

straints between the plan step a being removed and another
plan step c of form before(a, c) (or after(c, a)) from the
constraints list. Second, for each of the previously removed
constraints, a new constraint is added between c and the
plan step b replacing the removed plan of form before(b, c).
Finally, for all plans in constraints of form before(d, a) (or
after(a, d)) and points c (defined above), we add a constraint
of form after(c, d). This ensures that all existing orderings
are preserved. This functionality for determining orderings
is implemented as the UpdatePartialOrderings function in
the MergePlans function in Figure 5.

To maintain temporal consistency, the SA also modifies
partial orderings when it expands plan steps in search states.
When a child or the children of a plan step replace it on a
frontier, all constraints between the original plan steps and
other plan steps on either frontier are removed by the SA,
and it creates new constraints between these other plan steps
and the original plan step’s children, such that the existing
temporal orderings are ensured.

Once the SA has implemented either of these ordering
constraint changes, it determines if the transitive closure
of the partial orderings between the plans in both frontiers
contains any cycles and thus must be rejected as a potential
merge or expansion. The the SubstPartialOrderings func-
tion in the ExpandPlan function in Figure 5 implements
this functionality.

3.5.2 Resolving Planning Conflicts
To identify and resolve conflicts, we incorporate a conflict

resolution method developed by Clement [2]. His method
identifies plan steps in one agent’s frontier that potentially
threaten conditions associated with plan steps of another
agent’s frontier, and either ensures that ordering constraints
are added to prevent this threatening step from clobbering
any conditions, or if this is not possible, rejects the current
solution candidate. As the SA expands the agents’ frontiers
and generates potential merged solutions, it first passes the
search state through this plan conflict resolution mechanism,
before it enqueues the state on its candidate solutions list.

4. EVALUATION
Recall that our goals for an effective plan merging algo-

rithm were, first, that it should find plan step merges ef-
ficiently, and second, that it should look more broadly for
synergies between groups of (primitive) plan steps, and not
just at replacing plan steps one-for-one or one-for-many. In
this section, we provide experimental results to justify that
our top-down approach to hierarchical plan merging achieves
both of these goals.

In order to quantify the efficiency advantages of our top-
down approach, we conducted two sets of experiments in
which we compared it to a baseline algorithm that simply
produces all combinations of fully expanded plans for all
agents and looks for plan step merges just between primi-
tive plan steps. Our comparison assumes hierarchical infor-
mation is available, and does not consider the costs in con-
structing hierarchies where none previously exist, because
of the prevalence of hierarchical planning knowledge in the
types of applications we study. For both sets of experiments,
we assume that the plans have already been summarized of-
fline.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04 0.05
Top-Down (Seconds)

B
as

el
in

e
(S

ec
o

n
d

s)

CPU Seconds X = Y

Figure 7: Top-down Search vs. Baseline Search

The first set of experiments is an efficiency comparison
between our algorithm and the baseline algorithm, compar-
ing how fast each algorithm discovers the cheapest between
two plan hierarchies. Both plan hierarchies were and plan
hierarchies of depth three and branching factor two, where
each primitive had a single postcondition associated with it
(giving each hierarchy eight postconditions). We gave the
first agent the same hierarchy each time and then tried all
variations on the number of overlapping postconditions (but

65

not the location of conditions that overlap) between the first
agent’s hierarchy and the second agent’s hierarchy. (For ex-
ample, if the first agent’s hierarchy was composed of the
conditions (’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’) then one pos-
sible hierarchy for the second agent would be (’a’, ’x’, ’y’,
’d’, ’z’, ’f’, ’g’, ’h’)). Figure 7 plots each of the 256 exper-
iments based on the CPU time required by each algorithm
to find the (same) best merging solution. In all cases, the
CPU time for the baseline algorithm is at least that of the
improved algorithm (note the different scale on the graph)
and in most cases, much greater.

Though these efficiency results correspond only to the
two-agent synergy case, they should apply equally to the
case when we coordinate three or more agents. Though
the complexity of the top-down search increases as more
agents are added (mainly because there are more abstract
plan steps to compare for possible synergies), the complex-
ity of the primitive-only search grows even more, because
of the exponentially larger number of primitive plan steps
than abstract plan steps.

Merging abstract plan steps is advantageous for heteroge-
neous agents who have different primitives for accomplishing
actions, but whose abstract plans accomplish the same (or
subsumed) effects. In this case, none of their primitive steps
could merge, but the abstract steps that combine primitives
can. The merging of two abstract steps is effectively a many-
to-many merge between two different groups of plan steps,
as a single abstract step represents a group of primitive plan
steps. This is a capability not present in Yang’s algorithm
nor in the baseline algorithm from above.

Both the baseline algorithm and Yang’s optimal plan step
merging algorithm can merge a single step with a group of
steps, where the single step’s conditions subsume those of
the group. The baseline system will achieve this by per-
forming a series of pairwise merges between the subsuming
step and each step of the set of steps being subsumed. How-
ever, even for these merges, both approaches suffer from
the problem of not having an intuitive sense of what sets
of primitives to group together. Given n primitives at the
bottom of a plan hierarchy, the number of possible subsets
of primitive plans is

n
X

k=1

n!/((n − k)!k!) = 2n

Yang’s complexity analysis of his algorithm reveals the same
exponential result [18]. Yang does present an O(n log(n))
approximation algorithm for performing plan step merging,
though this algorithm relies on a total order over the indi-
vidual plans, which is an assumption not made of the plans
handled by our algorithm.

In contrast, our top-down approach relies on the pre-
existing structure and organization of primitives into more
abstract tasks (just one of many possible subsets), and thus
can avoid complexity issues if it is able to identify merges be-
tween abstract steps. Additionally, in the worst case, when
the primitives in the hierarchies are not grouped well into
abstract steps that produce synergy at the abstract level,
our SA will still identify merges between a single subsuming
plan step and a group of plan steps in the same manner as
the baseline approach does.

To show how our SA is able to find merges that the base-
line approach cannot, we conducted experiments that com-
pared the SA’s and the baseline algorithm’s performance on

0

1

2

3

4

5

6

0 2 4 6 8 10
Distance

C
o

st
 Im

p
ro

ve
m

en
t

Top-Down Baseline

Figure 8: Comparing Cost Reduction

sample plan hierarchies in which the agents shared common
effects but varying degrees of difference in how their primi-
tives achieve the effects. Each experiment involved a search
for synergy between two agents’ hierarchies, in which we
randomly generated the first agent’s hierarchy with a depth
of four and branching factor of two with two postconditions
at each primitive, meaning that the hierarchy had sixteen
actions with a total of 32 postconditions. All subplans were
totally ordered. We then created the second agent’s hierar-
chy by shuffling some of the common postconditions between
the primitive plan steps. For each experiment, the plans had
half (sixteen) of their conditions in common.

Figure 8 displays the results of these experiments. The
X-axis represents the distance of one hierarchy from the
other, where distance was computed as the number of com-
mon postconditions that were located in different primitives.
The two lines graphed represent the average cost improve-
ment (over twenty runs, with error bars indicating one stan-
dard deviation on each side) of both our SA and the Base-
line algorithm presented earlier. The graph shows that, as
the distance between hierarchies (the agent heterogeneity)
increases, the top-down search is increasingly able to find so-
lutions between abstract and primitive plan steps that the
Baseline algorithm misses. Thus, even in the simplistic ran-
dom plan hierarchies used here, we can demonstrate sub-
stantial improvements due to our new top-down algorithm.
Our ongoing research involves a broader investigation into
the characteristics of more complex plan hierarchies that
influence heterogeneity, and how those characteristics dif-
ferentially impact the efficacy of our approach along various
measures of performance.

Another benefit from our top-down approach is that it
represents an incremental search (an “anytime algorithm”
[4] for synergies. Typically, the more time spent, the more
deeply into the plan hierarchies the synergy search goes, and
the greater the opportunity for breaking plans into finer
pieces that can be merged to more precisely balance the
plans’ costs among the agents. Such a balance can, for ex-
ample, increase parallelism to decrease the plans’ durations.
This suggests that there is a “break-even” point in using our
top-down synergy search - a point at which the synergy im-
provements (savings in plan execution time) stop exceeding
the time spent finding those improvements. We can empiri-
cally see this, as illustrated in Figure 9. An advantage of our

66

0

40

80

120

160

200

0.01 0.1 1 10 100 1000

Computation Time (seconds)

T
o

ta
l D

u
ra

ti
o

n
 C

o
st

 (
se

co
n

d
s)

Figure 9: Tradeoffs of coordinating at different levels

approach is therefore its “anytime” character, allowing the
use of deliberation scheduling [1] or other methods to temper
the search for synergies based on its costs and benefits.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described a method of searching for

and exploiting synergistic relationships between different hi-
erarchical planning agents in a multi-agent system. We
have shown how an effective search strategy (a top-down
search) combined with a plan summarization mechanism,
which have proven effective for conflict resolution [2], can
also benefit a search for these synergies. Our experimental
results indicate the effectiveness of our approach when com-
pared to a system that does not harness the advantages of
a hierarchical plan representation.

We have also been working on ways to add reasoning
about causal links between plan steps in plan hierarchies to
enable us to automatically determine the useful effects [18]
of plan steps, which in turn will allow us to determine what
remaining steps in a plan frontier are still serving a useful
purpose. Those that no longer contribute conditions to later
steps (as causal links indicate) can be removed from the plan
hierarchies. That is, steps that do not have any causal links
connecting their postconditions to another step’s precondi-
tions can be dropped as well. Our most current work im-
plements the use of causal links to determine useful effects.
In addition to our causal link work, we are also working
to enhance our representation to support both temporally
quantified relations and constraints between plan steps, as
well as expanding the SA to discover and exploit additional
types of synergy relationships beyond the effect subsump-
tion relationships considered here.

6. ACKNOWLEDGEMENTS
We wish to thank Brad Clement, Thom Bartold, and

the CoABS Grid development team for software they con-
tributed to this effort. This research was supported by
DARPA (F30602-98-2-0142).

7. REFERENCES
[1] M. Boddy and T. L. Dean. Deliberation scheduling for

problem solving in time-constrained environments.
Artificial Intelligence, 67(2):245–285, 1994.

[2] B. Clement and E. Durfee. Top-down search for
coordinating the hierarchical plans of multiple agents.
In Proc. of Third Int. Conf. on Autonomous Agents,
pages 252–259, 1999.

[3] M. M. de Weerdt and C. Witteveen. A resource logic
for multi-agent plan merging. In Proc. of the 20th

Workshop of the UK Planning and Scheduling Special

Interest Group, pages 244–256, 2001.

[4] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proc. of AAAI-88, pages 49–54, 1988.

[5] K. Decker and V. Lesser. Designing a family of
coordination algorithms. In Proc. of First Int. Conf.

on Multi-Agent Systems, pages 73–80, 1995.

[6] M. desJardins and M. Wolverton. Coordinating
planning activity and information flow in a distributed
planning system. In AAAI Fall Symposium on

Distributed Continual Planning, 1998.

[7] E. Durfee and T. Montgomery. Coordination as
distributed search in a hierarchical behavior space.
IEEE Transactions on Systems, Man, and

Cybernetics, 21(6):1363–1378, 1991.

[8] E. H. Durfee and V. R. Lesser. Partial global planning:
A coordination framework for distributed hypothesis
formation. IEEE Transactions on Systems, Man, and

Cybernetics, 21(5):1167–1183, Sept.-Oct. 1991.

[9] E. Ephrati and J. S. Rosenschein. Divide and conquer
in multi-agent planning. In National Conference on

Artificial Intelligence, pages 375–380, 1994.

[10] M. Georgeff. Communication and interaction in
multi-agent planning systems. In Proc. of AAAI-83,
pages 125–129, 1983.

[11] C. V. Goldman and J. S. Rosenschein. Emergent
coordination through the use of cooperative
state-changing rules. In Proc of the 12th Int.

Workshop on Distributed AI, pages 171–185, 1993.

[12] J. F. Horty and M. E. Pollack. Evaluating new options
in the context of existing plans. Artificial Intelligence,
127(2):199–220, 2001.

[13] A. L. Lansky. Localized search for controlling
automated reasoning. In Proceedings of the Workshop

on Innovative Approaches to Planning, Scheduling and

Control, pages 115–125. Morgan Kaufmann, 1990.

[14] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:

Designing Conventions for Automated Negotiation

among Computers. MIT Press, 1994.

[15] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. In IEEE Transaction on Computers,
number 12 in C-29, pages 1104–1113, 1980.

[16] M. Vilain and H. Kautz. Constraint propagation
algorithms for temporal reasoning. In Proc. of Fifth

National Conf. on AI, pages 377–382, 1986.

[17] F. von Martial. Interactions among autonomous
planning agents. In Y. Demazeau and J.-P. Muller,
editors, Decentralized AI, pages 105–119. North
Holland, 1990.

[18] Q. Yang. Intelligent Planning: A Decomposition and

Abstraction Based Approach to Classical Planning.
Springer-Verlag, Berlin, 1997.

67

Limiting Disruption in Multiagent Replanning
Thomas Bartold

University of Michigan
1101 Beal Ave

Ann Arbor, MI 48109-2110 USA
1-734-763-9074

tbartold@umich.edu

Edmund Durfee
University of Michigan

1101 Beal Ave
Ann Arbor, MI 48109-2110 USA

1-734-936-1563

durfee@umich.edu

ABSTRACT
Multiagent systems sometimes undergo changes that cause
coordination commitments to become insufficient or out of date,
such that the coordinated agent plans need to be repaired or
replaced. When recoordination becomes necessary, disruption to
the commitments made by the agents in their original plans should
be minimized. We approach the problem of minimizing disruption
by augmenting pre-existing coordination technology by
developing metrics and automated processes for it to rank and
potentially recommend new coordination commitments more
rapidly. In this paper, we explain, examine, and evaluate our new
metrics and processes, demonstrating empirically that flexible
measures of disruption can streamline the coordination process.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence - Multiagent systems

Keywords
Coordination of multiple agents, Conflict resolution, Multiagent
planning, Biased search, Disruption

1. INTRODUCTION
Agents acting in complex, dynamic environments must often
adjust their plans to take into account actions of other agents, such
as to avoid potential conflicts. Possible conflicts can be detected
by selectively exchanging and comparing portions of agents'
individual plans, identifying inconsistent expectations, and adding
synchronization actions and/or blocking some action choices to
ensure conflicts cannot arise. Reaching agreement on what
coordination commitments to adopt, and implementing them
(which could trigger further downstream commitments and
negotiations), can incur significant overhead. For example, in one
of the application domains that we have studied, reaching
commitments for multi-national coalition operations [13] can
involve numerous levels of negotiation and diplomacy.

If some of the agents need to later revise their individual plans in
response to unexpected dynamic changes in the environment,
prior coordination commitments can be imperiled. To avoid
having to incur another round of significant overhead, the agents
might prefer to coordinate their changed plans as similarly as
possible to how they coordinated their previous plans. We refer
to changes in coordination commitments as forms of disruption.

We argue that agents should consider disruption when deciding
on coordination commitments to make in changing circumstances.
Obviously, there are many factors besides disruption that should
be weighed when deciding on a coordination solution, including
reducing costs for joint activities and maximizing parallel and
independent activity of agents. However, the emphasis of this
paper is on disruption. In particular, the contributions of the work
we present in this paper revolve around how disruption can be
estimated when comparing alternative coordination solutions, and
how the search for coordinated solutions can be effectively
streamlined towards finding less disruptive candidates sooner.

In what follows, we assume that the plans of a group of agents
have been initially coordinated, but that a change occurs that
forces one or more agents to revise their plans such that some
coordination commitments must be violated. Rather than starting
the planning process over again from scratch, or even just starting
the coordination process over again, we want to reuse the results
of the prior planning and coordination process to guide the search
to restore coordination in a manner that minimizes disruption to
the previous coordination commitments, effectively repairing the
coordinated solution to fit the revised plans.

The idea of attempting to reuse prior planning and coordination
effort when adapting to new situations is far from new. Indeed,
issues of how and when an agent should decide whether to honor
its prior plan commitments versus reconsidering them have been
at the core of research in areas such as plan repair/replanning [8],
reactive plan execution architectures [6], and plan management
[7]. Similar issues arise in the multiagent literature, in terms of
how an agent that has already coordinated its plans with other
agents should react to unexpected circumstances. Relevant work
includes that on conventions that agents abide by when they
change their intentions [5], on polite behavior that attempts to
minimize impact on others [11], and on tolerating minor
inefficiencies and adhering to suboptimal plans rather than
prompting recoordination [4]. Our work adds to this thread of
research by developing some rudimentary metrics for particular
kinds of disruption, and by demonstrating how such metrics can
be heuristically employed to improve coordination search
efficiency. In contrast with PGP [4], where inconsistency implied
inefficiency, here any inconsistency could be catastrophic, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 …$5.00.

68

goodelle
Text Box
Appendix H:

recoordination becomes imperative. Because the need for
recoordination can be time sensitive, coordination efficiency is an
issue, and could benefit from prioritizing the order in which
conflicts are addressed, as in constraint satisfaction problems [14].

In the next section, we illustrate concepts of disruption using a
simplified application domain that we later elaborate for
experimental evaluation. We then turn to metrics for estimating
disruption, which forms the basis for comparing alternative
candidate solutions. Given a search mechanism that generates
candidate solutions, we can rank these solutions based on the
metrics. However, given the assumed dynamics of the
environment, it could be the case that candidate solutions
generated later are better, and it would be desirable instead to bias
the search process to generate less disruptive solutions sooner.
We outline our techniques for instituting this bias in Sections 4-5.
In Section 6, we evaluate the effectiveness of these techniques,
and then we outline directions of our future work in the
concluding section.

2. SIMPLIFIED EXAMPLE
To date, the primary application domain in which we have studied
disruption has been coalition operations, where the plans of
coalition partners might unintentionally interact, and so the
partners coordinate their plans, and recoordinate their plans, only
when circumstances change [13]. For ease of exposition and
experimentation, however, in this paper we will concentrate on a
simplified problem of coordinated access to potentially shared
resources, in terms of avoiding collisions of aircraft that could
share corridors. The alternative routes and locations are
represented as edges and nodes (respectively) in a graph, as in
Figure 1. The first agent, A1, wants to move from location A to
location D, and can do so either via location B or via location C.

Our research has emphasized coordinating plans generated
through HTN planning techniques, in the tradition of NOAH [9]
and NONLIN [10]. Planning begins with high level goals and
iteratively refines abstract steps until a complete task network is
created. The plan hierarchies generated are all strictly trees. By
retaining the hierarchy, coordination can be achieved at various
levels of abstraction. In Figure 2, we show how A1’ s plan could
be represented hierarchically [8,12] with three abstract plan steps
and four primitives. For A1, the "Cross AD" abstract plan can be
refined to either abstract subplan "Via B" or "Via C". Each of
these subplans can be refined into a pair of primitive move
operations. The plans used in our example are assumed to be
totally ordered, although this is not required by our methods.

Figure 1: Sample Domain

An extreme example of overlap is when a second agent, A2, also
needs to go from A to D, and has access to the same routes. It
therefore has an identical plan to A1. In this case, the agents
could coordinate by synchronizing their actions, such as by

having A2 wait to begin its movements until it receives a signal
from A1, and A1 sending that signal once it reaches D.
Alternatively, the agents could impose constraints on how each
will execute its plan, such as by having A1 commit to not move
through location C, and A2 commit to not moving through B.
These (and other possible) coordination solutions impose
constraints on what agents are allowed to do, what they are
required to do, and/or when they can do various actions.

Assuming that agents have agreed on particular commitments and
have gone through the (often considerable) effort to reserve the
resources and institute the agreements to implement them, then
they should resist making wholesale changes if the world changes.
For example, a third agent, A3, could enter the picture; in the
worst case, its plan might be the same as those of A1 and A2. The
simplest, and least disruptive way, of coordinating A3 would be to
simply force it to work around the coordinated plans of the other
agents. For example, it might simply wait until A2 signals it (once
A2 is done) if A2 was constrained to first wait for A1. Or, if A1
and A2 had committed to complementary routes, then A3 either
would need to be signaled by both of them (in which case it could
follow either route) or one of them (in which case it would have to
traverse the same route as that one). But, given the delays of
either of these, it might be preferable for A3 to be permitted to
begin as soon as one or both of the others have completed only
their first legs. This imposes more demands on those other
agents, and is more potentially disruptive. If A3 had a time-
critical delivery to make, then it might want to precede one or
both of the other agents, which could more significantly disrupt
the previously expected behaviors of A1and A2.

Figure 2: Sample Hierarchical Plan

Again, as illustrated in this example, our claim is not that
wholesale changes should not be permitted, but rather that, all else
being equal, less disruptive solutions should be preferred. In this
example, and in less tightly-coupled examples (where agents have
overlapping but not identical plans), we would like to have
measures of how much disruption is involved. Doing so requires
a clearer characterization of the types of interagent commitments
that can be made, and the costs of making and breaking them.

3. COORDINATION COMMITMENTS
Coordination commitments can be viewed as modifications to
single-agent plans that constrain their execution and augment their
actions to ensure coordinated outcomes. We assume plans are
organized hierarchically, as in our previous example illustrated in
Figure 2. A plan Pi (for agent Ai) is represented as a tree where
each node is a plan step that can be identified (or labeled)
uniquely as accomplishing some goal or subgoal. An and plan
step (denoted by the connecting line between its children) or an or
plan step can be refined, replacing an and step with all of its

69

children, and replacing an or step with any one of its children.
The pre- and post-conditions of an abstract plan step can be
summarized from those of its children [1,2]. Primitive plan steps
are neither and nor or because they cannot be refined, and
represent actual actions to be taken by the agent, where each
action has standard STRIPS representations of the action's pre-
and post-conditions. Primitive plan steps also have costs and
durations, where the interval over which the plan step takes place
is captured as start and end time points. The preconditions,
postconditions, costs, durations, and start/end time points of non-
primitive plan steps can be derived bottom-up from their
descendants. A plan step can also have in-conditions, permitting
it to model temporary changes to the world (brought about by
some of an abstract step's subsumed primitives and undone by
other primitives) as well as more permanent effects of the step.

A coordination solution C = (A, P, S, B) is composed of a set of
agents, A = {A1, A2, …, An}, where the number of agents n = |A|,
the individual agent plans, P = {P1, P2, …, Pn}, that are each
internally conflict-free, and coordination commitments that
resolve conflicts between the agent plans. There are two distinct
types of coordination commitments: blocking commitments B =
{B1, B2, …, Bn}, and synchronization commitments, S = {S1, S2,
…, Sn}, partitioned into subsets associated with each agent.
Blocking commitments made by an agent capture promises by the
agent to block off some of its options (restrict its choices for an or
plan step) when those options are responsible for potential
conflicts. Synchronization commitments represent a decision by
an agent to engage in a signaling operation with other agents,
either waiting for the other agent to signal it such that it can
continue with its plan, or sending a signal to another agent to
release that other agent to continue.

Whenever the plans of any of the agents change in response to
domain dynamics, including when agents enter or leave the
domain, the agents' previously-held coordination solution, C'={A',
P', S', B'}, can become obsolete. The disruption (D) caused by a
new coordination solution (C) as compared to the previous
(reference) solution (C'), can be calculated solely by examining
the sets of coordination commitments in the solutions D(S', B', S,
B). The simplest metric is to just count the number of new
commitments added into the new solution and the number of old
commitments dropped from the previously adopted solution.
However, this unrealistically treats all commitment changes as
equally disruptive. Instead, we weight changes differently
depending on the commitment type, as now described.

3.1 Synchronization Commitments
To avoid conflicting actions, one agent may (at a specific point in
its plan) need to notify another agent that the other agent may
proceed (from a particular point in its plan). In our simple
example, for instance, when A1 has completed the action "Move
AB", it could release A2 to take its first moving action. Each
synchronization commitment can be represented by a 5-tuple (Ai,
pointi, type, Aj, pointj). The type of synchronization commitment
will be either wait (for another agent), or release (another agent to
proceed). Each synchronization commitment has a dual; that is,
for every wait there is a release at some other agent, and vice
versa. These commitments always occur right before or after a
particular plan step, specified for Ai as pointi. This means that
synchronization messages always occur between (primitive) plan
steps; however, they can occur during more abstract plan steps, so

long as exactly when during those steps is ultimately derivable as
those steps are refined. A1's commitment above would be
represented as (A1, move-ab-end, release, A2, cross-ad-start).

We assume that disruption is additive, so that the total disruption
by some coordination solution can be computed as a summation
over individual disruptive changes to commitments. In what
follows, therefore, we first quantify the disruption due to
individual commitment changes, and then we go on to explain
how we determine the disruption to the agent when there are
multiple elements in one set of commitments or the other.

In our example, at the most abstract level, A1 could wait for A2 to
complete its plan before starting its own, resulting in a single
coordination commitment for each of the agents. This would be
represented as the coordination commitment:

S11' = (A1, cross-ad-start, wait, A2, cross-ad-end) (1)

and its dual:

S21' = (A2, cross-ad-end, release, A1, cross-ad-start). (2)

When looking for matches, our algorithm examines the attributes
of the various coordination commitments. Weighting each of
these attributes appropriately can scale the quality of the match.
That is, a commitment that matches on four out of five attributes
should have lower disruption than one that can only be matched
with a single attribute. For example, assume that given a change
to the agents' plans, one possible new commitment is:

S11 = (A1, cross-ad-start, wait, A2, move-cd-end) (3)

Compared to the original commitment (Eq. 1), an attribute does
not match, so there is a change in commitments and this
contributes to the disruption to A1. Differences (deltas between
commitments) associated with different attributes can be weighted
differently. In this case, the other agent's time point (point2) does
not match, so a delta (δ) for other, δo should be added to the total
computed disruption to A1.

The total disruption is simply a multi-attribute summation over
the deltas, where a weighting (δ value) is associated with each
non-matching attribute. In the case of synchronization
commitments for any agent Ai, there are four attributes that might
not match1, and their weights are given as δe (Ai's plan step time
point), δc (the type of commitment), δa (the other agent), and δo
(the other agent's plan step time point).

If the synchronization constraint had instead switched the order of
the plan executions, then a new commitment could instead be:

S11 = (A1, cross-ad-end, release, A2, cross-ad-start) (4)

Compared to the original commitment (Eq. 1), this has three
attributes that differ (only the agents remain the same). The
disruption would thus be the sum δe+δc+δo.

In general, the disruption between a pair of commitments can be
directly calculated from the two commitments by treating them as
arrays, and applying the formula:

1 Since disruption is evaluated for each agent separately, the first
attribute of all constraints applied to a specific agent must match.

70

Dsijk = δe(Sij[1]�Sik'[1]) + δc(Sij[2]�Sik'[2]) + δq(Sij[3]�Sik'[3]) +
δo(Sij[4]�Sik'[4]) (5)

where Sij[0] , the first attribute, is the agent and will be the same
for any commitments being compared. Mismatches in any of the
other four attributes will contribute the appropriate δ's. Ds1 is a
measure of disruption to agent A1 and the brackets indicate the
indices of the synchronization constraints in the two sets of
commitments.

3.1.1 Unmatched Synchronization Commitments
Not all plan commitments will match between solutions; one set
of commitments may be larger than the other. A synchronization
commitment from the old solution that is unmatched in the new
solution could be disruptive to an agent, but the amount of
disruption should depend on the type of commitment. If A2 were
prepared to wait for A1 to release it to proceed, we would expect
the absence of that signal to be disruptive. We can identify this
kind of situation by noticing that a wait commitment has been
dropped from the set of commitments for the agent. A2 must
notice that the commitment is missing, otherwise it could wait
forever for release and fail to achieve its goals. On the other hand,
should A2 have been expected to release A1 in the prior solution,
but now that requirement is lifted, the disruption to A2 would be
less, because sending a release that is no longer being waited for
only wastes time and bandwidth, rather than leading to deadlock.
We thus assign different values, δw and δr, for the dropped wait
and release modifications respectively. As per the above, we
would qualitatively expect that δw > δr.

When a commitment in the new solution has no corresponding
commitment in the old, we need to include the disruption caused
by the added unmatched commitment. Since we have seen that
dropping release and wait commitments might cause different
amounts of disruption, it may also be that adding different
synchronization commitments might have different disruption. We
assign the value δx to an added wait commitment's disruption, and
δs for an added release commitment. We would expect that the
disruption of adding a new synchronization commitment would be
at least as great as a totally mismatched commitment, and so
expect that its value (δx or δs) will be at least δe+δc+δa+δo.

3.1.2 Multiple Synchronization Commitments
It is likely that there are multiple commitments in either the old or
new solution (or both). In this case, we should match the plan
commitments that are most similar to each other to get a true
sense of the disruption. Clearly, we want to match identical
commitments to each other, since they would not add any
disruption to the agent. By matching the remaining pairs in order
of minimized distance between them, we have a consistent method
for pairing the commitments. When the number of plan
commitments is not the same, there will be some left unmatched,
and these will contribute to disruption as just described.

We use a greedy algorithm (Figure 3) that calculates the
disruption (Dsi) to an agent (Ai) caused by switching from one set
of commitments (Si') to another (Si). It first finds identical matches
between the sets of commitments (checks for disruption=0), and
then, among the unmatched commitments, successively looks for
the best remaining match between the sets. Each pair of matched
commitments (Sij and Sik') will add the appropriate amount (Dsijk

where k is actually dependant on j) to the disruption score (Eq. 5).

/ / For each agent A(i) exami ne S(i) and S' (i)
Set " check val ue" =0
Whi l e el ement s r emai n i n bot h set s {
 For each el ement i n set S {
 For each el ement i n set S' {
 Cal cul at e di sr upt i on bet ween el ement s
 I f di sr upt i on=" check val ue" {
 Add di sr upt i on t o t ot al
 Remove bot h el ement s f r om set s
 Cont i nue wi t h next el ement i n S } } }
 I ncr ement " check val ue" }

/ / One or bot h set s ar e now empt y
For each el ement r emai ni ng i n S or S' {
 Add appr opr i at e unmat ched di sr upt i on val ue }

Figure 3: Calculate Disruption for Sets of Commitments

The remaining unmatched commitment(s) from the new or old
solution list will add their respective values (δx, δs, δw or δr).

Sorting the lists of commitments, we can present the following
equations that summarize the calculations done in the algorithm,
where n is the number of new commitments, and o is the number
of old commitments.

When o>n:

Dsi = � j=1..n Dsijk(j) + � k=n+1..o (δw(Sik'[2] =="wait") +
δr(Sik'[2] =="release")) (6)

When n>o:

 Dsi = � j=1..o Dsijk(j) + � j=o+1..n (δx(Sij[2] =="wait") +
δs(Sij[2] =="release")) (7)

The first sum over j in each case is for the matched commitments,
and the second sums are intended for the unmatched
commitments. In the first sum, Dsijk uses Sik', the appropriately
matched old commitment for Sij, so k depends on j.

Note that if Si=Si', then Dsi=0. Note also that, though calculating
the disruption of a single pair of synchronization commitments is
reflexive, the disruption of two sets of commitments may not be,
since the two sets may be of different sizes, and the δ values for
different kinds of unmatched commitments may not be equal.

3.2 Blocking Commitments
Since blocking commitments are distinctly different from
synchronization commitments, they are treated separately. A
blocking commitment is represented by a 3-tuple (agent, plan-
step, parent-plan-step). Since a blocking commitment only deals
with a single agent, old and new commitments either refer to
identical plan steps, or else they do not. When they do, they
match. If they do not, then the disruption should also examine the
ancestry of the plan steps. For example, if the old and new plan
steps share a common parent (that is, they are alternative or
branches of the same abstract plan step), then that information can
be used to estimate the disruption more accurately.

Returning to our simplified example (Figures 1 and 2), consider
the following progression of commitments. Initially, A1 might be
alone in the world, and thus would adopt its own plan (Figure 2),
leaving itself flexibility as to whether to use the route through B
or the route through C. If A2 enters the world and has the
identical plan, now there is the possibility of collision along one
of the routes. This can be averted by having agents make
blocking commitments, such as A1 committing to not move

71

through C, and A2 committing to not move through B. From the
perspective of A1, this disrupts its prior expectations of flexibility;
however, it could be that A1 had already decided to move through
B anyway, so the disruption is minimal. Either way, we would
want to estimate this disruption.

Further, let us say that A2, for some reason, changes its mind and
determines that it really needs to move via B. Now A1 is perhaps
more strongly disrupted in its expectations, needing to definitely
adopt the opposite plan than what it had planned to do. We would
expect that this would disrupt A1 more severely, therefore.
Finally, though, let us say that A2 decides to abandon its goal
entirely, leaving the world entirely to A1. A1 can thus remove its
commitment to block the route via B. Of course, it could simply
pretend like the commitment was still there, and continue to
pursue a plan to move via C, so it need not be strongly disrupted.

Thus, the degree to which changes to blocking commitments will
disrupt agents depends on whether these commitments are being
added, removed, or switched. To capture these differences, we use
δb to model the costs of adding a blocking commitment, and δu for
a removed commitment, although from our simple analysis above
it seems reasonable to assume that δu=0. If a blocking
commitment is removed while an unrelated commitment is added,
we would expect the disruption to equal the sum of the
disruptions of the two changes to commitments separately.
However, if the commitments being added and removed are
related, such as switching the blocking of an action with blocking
its sibling, then the disruption could be higher than the sum of
adding and removing constraints because an agent is forced away
from an action it could have planned toward an action that it
would not have planned. We use δm for the disruption of a
switched blocking commitment between sibling plan steps, and δn
for a non-sibling change to blocking commitments.

In general, the disruption of a new commitment relative to a prior
commitment can be directly calculated from the two commitments
by comparing the plan step attributes:

Dbijk =δm((Bij[1]�Bik'[1]) &(Bij[2] =Bik'[2])) +
δn((Bij[1]�Bik'[1])&(Bij[2]� Bik'[2])) (8)

where Bij[0] , the first attribute, is the agent and must be the same
for the two commitments. Bij[1] is the plan step being blocked,
and Bij[2] is the parent of the plan step Bij[1] , which allows us to
identify sibling plan steps.

3.2.1 Blocking Commitment Representation
Although blocking commitments, like synchronization
commitments, are imposed to successfully coordinate, they differ
in that they do not refer to the other agents with whom an
interaction is foreseen (in contrast with synchronization
commitments, where the agent waiting and the one releasing are
explicitly represented). The reason for this difference is
fundamental. A blocking commitment is an indication that a child
of an or node is removed from the final coordinated plan because
a conflict was identified between the conditions of the or node
and the conditions of another agent's plan step. However, there
may be more than one agent impacted from the blocking
commitment. For example, if A1 has blocked the route via C
(Figure 1) to avoid collision with A2, then agents that join later
can also take advantage of this commitment when planning their
routes. Later, even if A2 changes its plans entirely, A1 might still

need to adhere to the blocking commitment for the sake of other
agents. If the commitment explicitly modeled for whom the
blocking was being done, then this kind of change would require a
change in commitments being modeled. However, since, either
way, A1 is blocking the same plan steps, there should be no
disruption from such a change. Hence, this information is not
included in the commitment representation.

3.2.2 Multiple Blocking Commitments
Because coordination might require multiple blocking
commitments, we need to match them into pairs (to the extent
possible) to compute disruption. Each agent (Ai) is subject to a set
of (b) blocking commitments Bi = {Bi1, Bi2, …, Bib}. Given two
sets of blocking commitments (Bi and Bi'), we can calculate the
disruption (Dbi) to an agent (Ai) that switching from one set of
commitments (Bi') to the other (Bi) would cause. The algorithm
used is the same as that for synchronization commitments,
although it operates on the B sets instead of the S sets and a
different evaluation function is used. Similarly to the Dsi
equations (Eq. 6 & 7) we present the following Dbi equations,
where n is the number of new commitments, and o is the number
of old commitments.

When n>o:

Dbi = � j=1..o Dbijk(j) + � j=o+1..n δb (9)

When o>n:

Dbi = � j=1..n Dbijk(j) + � k=n+1..o δu (10)

Note that calculating the disruption of two sets of blocking
commitments is not reflexive, since the two sets may be of
different sizes and δb need not equal δu.

3.3 Estimating Overall Disruption
For any agent Ai in the set of agents A = {A1, A2, …, An}, the
associated sets of synchronization commitments are Si = {Si1, Si2,
…, Sis} and blocking commitments are Bi = {Bi1, Bi2, …, Bib}. Si
and Bi could each or both be empty. The disruption to an agent
(Di) is a function of the new commitments (Si and Bi) for the agent
when compared to the old commitments (Si' and Bi') for the same
agent. The total disruption to a single agent is simply:

Di = Dsi (Si ,Si')+ Dbi(Bi, Bi') (11)

Where Dsi and Dbi have been defined earlier (Eq. 6, 7, 9 and 10)
and can be weighted relative to each other by weighting the deltas
for synchronization commitments (δe δc δa δo δw δr δx δs) relative
to those for blocking commitments (δu δm δn δb).

The total disruption (D) of the new coordination solution (C)
relative to the old (C') is just the sum of the disruptions to all the
agents involved in the new solution.

 D(C,C') = �i=1..n Dsi (Si, Si') + Dbi (Bi, Bi') (12)

The disruption calculation should guarantee that the better the
commitments match, the lower the disruption will be. However,
while we have defined constraints (inequalities) on some of these
parameters, we have not suggested numeric values for them.
Ultimately, these parameter values summarize an expected
disruption cost that will be extremely domain dependent. While
we will use some numeric values for our experiments later, our
formulation purposely leaves these as user tunable parameters.

72

4. SORTING CANDIDATE SOLUTIONS
As solutions are generated by the top-down coordination process
[1], they will each have an associated disruption value. We create
a list of the solutions as they are generated and sort according to
the disruption values. Whoever selects the adopted solution then
has the ability to easily see the top candidates. We do not assume
that disruption will be the only factor involved in selecting a
solution, but it could be important.

To verify that our implementation is working properly, we can run
the system with the same sets of agents and plans as were used to
select the prior (reference) solution. As expected, the same
solution always comes out with zero disruption. The only other
solutions that have zero disruption are trivially identical solutions
(one or more and nodes, which have no other constraints on them,
are refined). The solutions with low (but non-zero) disruption are
also very similar to the reference, and predominantly solutions
where an and node with a constraint on it has been refined (so that
the constraint now applies to a child plan step of the node).

Disruption can be used as a measure of quality of the solution, but
we do not suggest that it be the only measure of quality used.
Other measures of quality could be the length of time the overall
solution requires at execution time (the level of concurrency), and
the flexibility of the plans (retaining its or branches). We expect
that an expert would select a solution that simultaneously
minimizes the overall execution time, maximizes the plan
flexibility, and minimizes the disruption to the agents. The first
two can generally not be satisfied simultaneously, but the choice
for the prior solution is typically preserved in the least disruptive
subsequent solution. That is, when we start with a reference
solution that has the shortest execution time, the solutions with
the least disruption are among the shortest duration. Likewise,
starting with a reference solution that is more flexible (generally
more abstract), the solutions with the least disruption are among
the most flexible. Qualitatively, disruption values make sense.

Although the implementation works as expected, doing the top-
down hierarchical search for solutions is no faster in finding the
least-disruptive solution (which from this point on in this paper
we refer to as the “best” solution) than it was the first time
around. If the best solution is a more abstract (serialized) solution,
it is generated near the start of the search. If the best solution
involves constraints between low-level primitives to achieve
concurrency, it will likely be generated late in the search. If low-
disruption solutions are more desirable, and solutions might be
selected under time pressure, we would like to generate them
earlier in the search - we need to bias the search process towards
finding them sooner.

5. IMPROVING SOLUTION GENERATION
Because a coordination solution consists of a set of partially-
refined, single-agent hierarchical plans along with a set of
coordination commitments, the coordination process must be
capable of taking, as input, the plan hierarchies of the agents, and
searching for these solutions. The coordination search involves
two nested phases, an outer search though plan refinements, and
an inner search for inter-agent coordination commitments [1,2].
The outer search iteratively refines abstract plan steps to generate
the partially-refined hierarchies. Each of the refinements can be
thought of as a cut through (or frontier of) the plans' hierarchies.
When an or node is refined, furthermore, there will be multiple

successor refinements, each representing the selection of one of
the possible refinement plan steps, and thus committing to
blocking the other possible refinements.2

Given any particular combination of plan refinements, there may
still be multiple ways to impose synchronization commitments
between the steps to produce a coordinated solution, so a second
inner search is performed on each frontier to find these. This
search compares plan steps of different agents in all possible
combinations to detect possible conflicts, and generates all
ordering commitment possibilities that would avoid the detected
conflicts. Note that, if the agents' plans are flat (not hierarchical),
then there is no outer search process, and the method described
here does not speed up the search for good solutions, but is still
able to rank solutions according to the amount of disruption.

By default, the search for coordination solutions works top-down
through the agents' plan hierarchies, attempting to find ways of
resolving conflicts at more abstract levels (which involve fewer,
larger plan steps) before seeking resolutions at more detailed
levels (which can require substantially more effort to find). It
works by initializing the outer search with the frontier containing
all agents' most abstract plan steps, passing this into the inner
search to generate all feasible solutions at the abstract level, then
returning to the outer search to generate the next refinement of the
frontier, passing that result to the inner search, and so on. This
process generates solutions that are then sorted; compared to the
solution generation process, the ranking and sorting process only
adds an additional 3% of time and memory.

However, if the goal is to find less disruptive solutions more
quickly, it should be possible to work not "top-down" but rather
to radiate out from more likely candidates. Specifically, because
coordination commitments involve the selection of particular
refinements (for blocking undesirable ones) and imposition of
synchronization commitments between particular plan steps, then
minimally disrupting solutions should involve the same plan steps
as the reference solution, to the extent possible. Refinements that
have not gone far enough, or have gone too far, or have refined
along very different or branches, hold less promise of yielding
less disruptive solutions. The search should postpone the
expensive inner search process on those frontiers until after more
promising candidates are tried.

Rather than automatically passing the outer search nodes into the
inner search as they are generated, therefore, the outer search
nodes are preliminarily inspected for disruption. Because an outer
search specifies a particular frontier of refined plan steps, and
because disruption due to blocking only needs this information for
each agent, part of the overall disruption measure can be found for
the outer search node. A lower bound on the disruption due to
synchronization commitments can also be estimated and added in.
Numerous outer search nodes can thus be generated and ranked
before any inner search is done, and thus earlier applications of
the inner search are more likely to give less disruptive solutions.

2 For simplicity, we are not modeling more complex blocking
constraints. When there are more than two children, blocking
constraints considering all possible subsets of children of an or
node could result in additional solutions, but those solutions
could be reconstructed from solutions already being generated.

73

Furthermore, if minimal disruption is the only solution criterion,
then branch-and-bound can be used to prune the search. A node
generated by the outer search whose disruption solely based on
blocking equals or exceeds the least disruptive solution found so
far need never itself undergo the inner search. However, a child of
that node in the outer search space might have a lower value of
disruption (if the outer search node had not been refined far
enough), so a node that will not undergo inner search should still
have its successor (refined) nodes generated and evaluated. In the
future, we will study how we can entirely prune nodes even in the
outer search by knowing when none of their successors could
possibly have lower disruption. This has not been of primary
importance since the outer search is much less time-consuming
than the (combinatorial) inner search.

5.1 Implementation
The new methods for measuring disruption, and biasing/pruning
search based on minimizing disruption, have been implemented in
the Multilevel Coordination Agent (MCA) [1,3]. The general
outer search in the original code was functionally similar to that
reported here, but had hardwired the top-down search and so
required some rewriting to accommodate heuristic ordering
procedures and pruning mechanisms. The actual functional
differences that resulted are only those needed to bias the search
towards nodes in the outer search space that have promisingly low
levels of disruption, while also allowing the pruning of nodes with
high disruption.

I ni t i al i ze best scor e (i nf i ni t y)
Cal cul at e scor e and pr i or i t y f or t he r oot node
Pl ace t he r oot node on t he queue.
Pl ace t he r oot node on t he cl osed l i st
Whi l e t her e ar e nodes on t he queue {
 Pul l a node f r om t he pr i or i t y queue.
 Gener at e chi l dr en of node
 For each chi l d {
 I f t he chi l d i s not on t he cl osed l i st {
 Cal cul at e scor e f or chi l d
 I f chi l d scor e <= best {
 Pl ace chi l d node on queue
 Pl ace t he chi l d on t he cl osed l i st } } }
 I f t he node' s scor e <= best {
 Per f or m i nner sear ch (out put sol ut i ons)
 Det er mi ne best scor e f r om new sol ut i ons } }

Figure 4: Biased Search and Pruning Algorithm
The general search process that is performed is given as pseudo-
code (Figure 4). The high-level functions referenced there are
described as follows.
Calculate Score: Calculates the disruption for a node as compared
to a reference set of commitments. When calculating the score for
a solution, both the disruption caused by changes to the blocking
commitments for each agent, and the disruption caused by
changes in the inter-agent synchronization commitments, are
included. When calculating the score of an outer search node, the
actual blocking commitments are considered, along with an
estimate for synchronization commitments.

The inner search adds inter-agent synchronization commitments
between plan steps and agents. These commitments (for the
reference solution) are compared to the plan steps and agents that
exist in the current node. The best possible match is used for each
commitment to give a lower bound for the disruption that could
be generated in the inner search.

Place node on queue: The estimated disruption for an outer search
node is used to insert the node into a priority queue. The node
score is thus used to bias the search towards refinements that will
allow the inner search to find a low disruption solution.

Perform inner search: A search is performed with the current node
to find inter-agent ordering commitments that resolve any
conflicts remaining between the plans in the node. The solutions
will consist of the agents' original plans and a set of commitments
for those plans that detail the inter-agent synchronizations added
in the inner search, and the blocking commitments (if any) added
in the outer search. Each of the solutions will have a disruption
score associated with it.

6. SEARCH SPEED IMPROVEMENT
A main challenge we face in recoordination is dealing with the
entry of an unexpected agent whose plan conflicts with the
already coordinated solution. While it is clear that all sorts of
other changes to a system can be disruptive, adding an agent (or
multiple agents) is the situation where the computational effort
goes up most dramatically in recoordination, and reducing that
increase becomes important.

The agent plans we use in this evaluation are identical to our
original plan (Figure 2), but are generated automatically with
random names for the intermediate points. This models a number
of agents all competing for flight corridors in a limited air space.
Each agent accomplishes an abstract goal in one of two ways,
requiring two distinct resources (the flight corridors) in each case.
Other agents will have identically structured plans, where there
may be conflicts over the flight corridors. We can vary three
parameters in generating our test plans: the number of agents, the
number of plan steps conflicting with other agents, and the
number of agents that the conflicting plan steps conflict with.

Although we presented extreme levels of conflict between the
agents in our initial example (all plan steps conflicting with all
other agents), this is unrealistic. Instead, what is more likely to
occur is that only a small portion of an agent's plan will conflict
with the other agents’ plans. To model this more realistic level of
overlap between the plans, our first test generates plans where
only one plan step for an agent conflicts, but with all other agents.
In this first case (the two solid curves in Figure 5), we look at how
varying the number of agents affects the overall time required to
coordinate the plans using biased vs. unbiased search. The time to
find all solutions in the unbiased search increases exponentially
with the number of agents. Biased search prunes parts of the
search space and, although it also increases exponentially, the
slope on the log scale is slightly less, 1.2 instead of 1.5. When
searching for the least disruptive solution in unbiased search,
there is no way to be sure it is the least disruptive without an
exhaustive search. With a biased search, the least-disruption
solution is verified faster because the number of possible
solutions generated, and the total search time, are reduced.

In all cases, the least disruptive solution was found approximately
halfway through the entire unbiased search process, while it was
found one-fifth of the way through the biased search process.
Because the search must complete before we can guarantee that
the least disruptive solution has been found, and because the
speedup is only linear, detailed results are not presented here.

74

Figure 5: Comparison of times required to find solutions with
and without disruption based bias and pruning.

In the second case (the two dashed curves in Figure 5), the agents
are subjected to fewer conflicts; the conflicting plan step only
conflicts with one or two other agents. The points do not appear to
follow as straight a line because of even/odd numbers of agents.
With an even number of agents, we can limit the conflicts
between agents to a single other agent. With an odd number, the
extra agent must conflict with two other agents, also increasing
their conflicts, and making the coordination problem more
difficult. Again, the biased search is an order of magnitude faster
than the unbiased search, and the slope is 0.8 instead of 1.0. In
general, we can prune away enough nodes using bias to finish the
search for solutions for N agents in much the same time as the
unbiased search does for N-1 agents. With larger numbers of
agents, the relative timesavings gets even greater.

7. Conclusions And Future Work
In this paper, we described a method for measuring disruption to
agents facing recoordination. We have shown how this flexible
measure can be used to bias and bound the search process to find
suitable coordination solutions faster.

Although our research focused mainly on how using disruption
measures can speed up the recoordination problem, we have seen
that there are instances where it could be used to speed up the
initial coordination problem. For instance, coordinating N-1
agents and then recoordinating N with bias can be an order of
magnitude faster than coordinating the N agents without bias
(when N>3). We are interested in applying disruption measures to
a wider range of problems, and intend to evaluate using disruption
to coordinate larger numbers of agents by recoordinating groups
of locally coordinated agents.

Although our work so far has only included synchronization and
blocking commitments in measuring disruption, we intend to add
reasoning about temporal constraints to the disruption measure.
When agents have synchronized their plans against clock times,
changing those time constraints could also be disruptive to the
agents and their other commitments. When appropriate, the added
measures of disruption could make the biased search even faster.

Our current work on disruption is closely tied to HTN planning,
and the kinds of commitments used in our metrics may not be
applicable to all planning methods. In a wider context, applying
the techniques described here to other plan coordination
mechanisms should be possible.

8. Acknowledgments
This work benefited from discussions with Jeff Cox and Brad
Clement and the code that they have written. DARPA (F30602-
98-2-0142) supported this research.

9. References
[1] B. Clement and E. Durfee. "Top-Down Search for

Coordinating the Hierarchical Plans of Multiple Agents."
Proceedings of the Third International Conference on
Autonomous Agents, 252-259, 1999.

[2] B. Clement, "Abstract Reasoning for Multiagent Coordination
and Planning" PhD thesis, University of Michigan, 2001.

[3] J. Cox, B. Clement, P. Pappachan, and E. Durfee. “ Integrating
Multiagent Coordination with Reactive Plan Execution.”
Proceedings of the Fifth International Conference on
Autonomous Agents , 149-150, 2001.

[4] E. Durfee, and V. Lesser, "Partial Global Planning: A
Coordination Framework for Distributed Hypothesis
Formation," IEEE Transactions on Systems, Man, and
Cybernetics, 21(5):1167-1183, September/October 1991.

[5] N.R.Jennings, "Commitments and Conventions: The
Foundation of Coordination in Multi-Agent Systems", The
Knowledge Review, 8(3), pp 223-250, 1993.

[6] D. Kinny and M. Georgeff. "Commitment and effectiveness of
situated agents." Proc. of IJCAI-91, pp. 82-88, 1991.

[7] M. Pollack and J. Horty, "There's More to Life than Making
Plans," AI Magazine, 20(4):71-84, 1999.

[8] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, pp 392-410, Prentice Hall, New Jersey, 1995.

[9] E. Sacerdoti, A Structure for Plans and Behavior,
Elsevier/North-Holland, Amsterdam, London, New York,
1977

[10] A. Tate, "Generating Project Networks," Proceedings of the
Tenth Intl. Joint Conference on Artificial Intelligence, 1987.

[11] T. Tsukada, and K. Shin, "PRIAM: Polite Rescheduler for
Intelligent Automated Manufacturing" in IEEE Trans. Robot.
Automat., vol.12, pp. 235-251, April 1996.

[12] G. Weiss, ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, MIT Press, Cambridge
Massachusetts, 1999.

[13] Control of Agent Based Systems Project
http://coabs.globalinfotek.com

[14] Vipin Kumar, "Algorithms for Constraints Satisfaction
problems: A Survey", AI Magazine, 13(1):32-44, 1992.

75

Coalition Agents Experiment: Multi-Agent Co-operation in an International
Coalition Setting

David N. Allsopp1, Patrick Beautement1, Jeffrey M. Bradshaw2, Edmund H. Durfee3, Michael

Kirton1, Craig A. Knoblock4, Niranjan Suri2, Austin Tate5, Craig W. Thompson6

1. QinetiQ Ltd,

Malvern Technology Centre,
St Andrews Road, Malvern,

 Worcestershire, WR14 3PS, UK
 {d.allsopp, m.kirton}@signal.qinetiq.com, pbeautement@qinetiq.com

2. Institute for Human & Machine Cognition

University of West Florida
40 South Alcaniz Street

Pensacola, FL 32501, USA
{jbradshaw, nsuri}@ai.uwf.edu

3. EECS Department

University of Michigan
Ann Arbor, MI 48109, USA
durfee@umich.edu

4. Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, USA
knoblock@isi.edu

5. Artificial Intelligence Applications Institute
Centre for Intelligent Systems and their Applications
Division of Informatics, The University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK
a.tate@ed.ac.uk

6. Object Services and Consulting, Inc. (OBJS)

2725 Deep Valley Trail, Plano, TX 75023, USA
thompson@objs.com

Abstract. Military Coalitions are examples of large-scale multi-faceted virtual organizations, which
sometimes need to be rapidly created and flexibly changed as circumstances alter. The Coalition Agents
eXperiment (CoAX) aims to show that multi-agent systems are an effective way of dealing with the
complexity of real-world problems, such as agile and robust Coalition operations and enabling interoperability
between heterogeneous components including legacy and actual military systems. CoAX is an international
collaboration carried out under the auspices of DARPA's Control of Agent-Based Systems (CoABS) program.
Building on the CoABS Grid framework, the CoAX agent infrastructure groups agents into domains that
reflect real-world organizational, functional and national boundaries, such that security and access to agents
and information can be governed by policies at multiple levels. A series of staged demonstrations of increased
complexity are being conducted in a realistic peace-enforcement scenario situated in 2012 in the fictitious
African state of "Binni". These demonstrations show how agent technologies support the rapid, co-ordinated
construction of a Coalition command system for intelligence gathering, for visualization, and for campaign,
battle and mission planning and execution.

1 Introduction and Background

1.1 Military Context
Success in military operations involves carrying out high-tempo, coherent, decisive actions faster than an opponent
can react, resulting in decision dominance through the use of command agility. Command agility is about being
flexible and adaptable so that fleeting opportunities can be grasped; the Commander issues clear intent and then
delegates control to subordinates, allowing them the scope to exercise initiative. It also means being innovative,
creative and unpredictable in a manner that (even if low-tempo) increases confusion in the mind of an opponent.
This process is command led; human decision-making is primary and the role of technology is secondary. Shared
understanding and Information Superiority are key enablers in this process and are fundamental to initiatives such as

76

goodelle
Text Box
Appendix I:

the UK's Command and Battlespace Management program, the US Joint BattleSpace Infosphere program and, more
generally, Network-Centric Warfare (http://www.dodccrp.org/).

In addition to the problems of integrating single-service and Joint capabilities into a coherent force, the nature of
Coalition (multi-national) operations implies some need to rapidly configure foreign or ‘come-as-you-are’ systems
into a cohesive whole. Many problems in this environment can only be solved by organizational changes and by
‘aligning’ doctrine, concepts of operations and procedures. Due to the inevitable absence of pre-existing co-
ordinated systems, Coalition scenarios require a rapid, flexible, on-the-fly approach that allows capabilities to be
assembled at run-time. However, in addressing this requirement for interoperability, it is also crucial to address
issues of security of data, control over semi-trusted software from other Coalition partners, and robustness of the
resulting system (e.g. the ability to withstand denial-of-service attacks).

Currently, Coalition operations are often characterized by data overload, information starvation, labor intensive
collection and co-ordination of information, and standalone stove-pipe command systems that use incompatible data
formats. This leads to a horrendous technical integration task and gives commanders only scattered snapshots of the
battlespace. This paper aims to show that the agent-based computing paradigm offers a promising new approach to
dealing with such issues by embracing the open, heterogeneous, diverse and dispersed nature of the Coalition
environment. In this paper, we show that software agents that act on behalf of human users enable military
commanders to act decisively in cyberspace and thus contribute towards the achievement of ‘Cyberspace
Superiority’, a critical component of warfare in the information age (Alberts et al, 2001).

1.2 Software Agent Technology
Software agents are currently receiving much attention in the research community. This interest is being driven by
the phenomenal growth of the Internet and the World-Wide-Web. Agents can be viewed as semi-autonomous
software designed to help people cope with the complexities of working collaboratively in a distributed information
environment. This involves the agents communicating between the users and between themselves. The agents are
used to find, format, filter and share information, and work with users to make the information available wherever
and whenever they need it. The agents are also able to proactively suggest courses of action, monitor mission
progress, and recommend plan adjustments as circumstances unfold.

A community of agents can be seen as a set of distributed, asynchronous processes communicating and sharing
information by message passing in some infrastructure. In this regard, an important output from DARPA's CoABS
program is the CoABS Grid — a middleware layer based on Java / Jini technology that provides the computing
infrastructure to integrate heterogeneous agent communities and systems rapidly (http://coabs.globalinfotek.com/).

A recent article (Jennings, 2001) argues that the agent paradigm is a good way of building complex software
systems in general, and hence offers potential benefits in the Coalition setting. For example, legacy command
systems could be provided with software agent wrappers that allow them to inter-operate and share information with
other systems and agent applications in a loosely connected, heterogeneous architecture, underpinned by the CoABS
Grid. The scenario used as the basis of the experiments to test this hypothesis is described in section 2.

1.3 Aims of the CoAX Project
This paper describes the progress of an international collaborative effort whose overall goals are to demonstrate that
the agent-based computing paradigm offers a promising new approach to dealing with the technical issues of
establishing coherent command and control (C2) in a Coalition organization. This collaborative effort, entitled
CoAX (Coalition Agents eXperiment), is a Technology Integration Experiment under the auspices of DARPA's
Control of Agent Based Systems (CoABS) program (http://www.aiai.ed.ac.uk/project/coax/). Specific hypotheses of
the research program are that:
• agents are a useful metaphor for dealing with the complexity of real-world systems such as military operations;
• an agent-based C2 framework can support agile and robust Coalition operations;
• software agents can be used to enable interoperability between legacy or previously incompatible systems;
• the CoABS Grid can be used to rapidly integrate a wide variety of agents and systems — i.e., rapid creation of

virtual organizations;
• domain policies can structure agent relationships and enforce Coalition policies;
• intelligent task and process management can improve agent collaboration;
• semantic web technology can improve agent interoperability between disparate Coalition command systems.

The CoAX team has built a software agent test-bed based on the CoABS Grid (http://coabs.globalinfotek.com/).
This paper describes the work done, the demonstrations carried out so far, the scenario and storyboard used and
some of the insights gained.

77

1.4 Structure of the Paper
The paper begins by describing the Coalition scenario and military command structure used in our demonstration
experiments. Section 3 describes the corresponding agent architecture that was developed to reflect the military
organizational structure. The events occurring in the storyboard used for the various demonstrations so far are
described in Section 4. A preliminary assessment of software agent capabilities and a discussion of future research
are provided in Section 5. Concluding remarks are given in Section 6.

2 A Representative Scenario and Coalition Command Structure
The CoAX work needed a suitably realistic scenario for its experiments and so we expanded the fictional "Binni"
scenario (Rathmell, 1999) developed for The Technology Co-operation Programme. In this scenario the year is 2012
and global warming has altered the political balance of the world. The action is set in an area that is currently the
Sudanese Plain (Figure 1). Previously uninhabited land in the Plain is now arable and the area has received large
amounts of foreign investment. It is now called “The Golden Bowl of Africa”.

Figure 1. Map of Binni showing firestorm deception. Misinformation from Gao is intended to displace the firestorm to the
west, allowing Gao and Agadez forces to clash in the region of the Laki Safari Park.

A conflict has developed between two countries in the area. To the north is Gao, which has expansionist aspirations
but which is only moderately developed, with old equipment and with a mostly agrarian society. To the south is
Agadez, a relatively well developed and fundamentalist country. Gao has managed to annex an area of land, called it
Binni and has put in its own puppet government. This action has come under fierce attack from Agadez. Gao has
played the ‘threat of weapons of mass destruction from Agadez’ card and has enlisted support from the UN who
have deployed a force, the UN War Avoidance Force for Binni (UNWAFB), to stabilize the region. This basic
scenario was adapted for a number of CoAX demonstrations (see Section 4), beginning with the initial planning
phase, then moving onto shorter timescales and more dynamic, uncertain events for the execution phase.

2.1 Coalition Command Structure
This Binni Coalition operation needs to rapidly configure various incompatible, ‘come-as-you-are’ or foreign
systems into a cohesive whole within an open, heterogeneous and dispersed environment. This scenario provides a

78

suitable test for the software agent experiments, where run-time composability is a very close metaphor for the
dynamic uncertainty of Coalition operations. The complexity of the situation must not be underestimated and is best
illustrated by looking at the Binni Coalition Command Structure shown in Figure 2 below.

This is a representative and realistic Coalition command structure involving the UN, Governments, Other
Government Departments (OGDs, such as the Foreign Office), Non-Government Organizations (NGOs, such as
Oxfam), representatives of all the Coalition countries (with their own ‘ghosted’ Command Structures) and the
Coalition HQs and subordinate fighting forces. The solid black lines on the diagram show the legal lines of authority
(the command chain) and accountability. This is the kind of Coalition structure that would be agreed by the
participants; no part of the formal command chain is owned by any specific country. Note that the ‘levels of
command’ overlap and their boundaries are not rigidly defined. Dashed lines show an advisory / negotiating role.

Joint Task Force
Commander in JTFHQ

Joint Force Air
Component Commander

(JFACC in JFAC HQ)

Joint Force Land
Component Commander

(JFLCC in JFLC HQ)

Joint Force Maritime
Component Commander

(JFMCC in JFMC HQ)

Coalition
Maritime
Units

Coalition
Land
Units

Coalition
Air
Units

UN

UNSG

UNSGSR

Grand
Strategic

Military
Strategic

Operational

Tactical

Home base

Theatre

Governments
National

Grand Strategic
Joint HQs

NGOs

Nat’l
Reps

Nat’l
Reps

Nat’l
Reps

Other
components:
Logistics,
marines, SF etc

OGDs

OGDs

Figure 2: A representative Coalition structure, showing the chain of command down from the United Nations, including
the ‘ghosted’ command structures of the participant nations, and Non-Government Organizations (NGOs). The
approximate command level at which the various entities operate is indicated on the left.

3 Software Agent Architecture

3.1 Human Domains
Integrating information across a Coalition is not just a matter of employing technology — it involves the creation of
a coherent ‘interoperability of the mind’ at the human level as well, where many social and cultural factors come
into play. The mapping between the human and technical worlds is thus not straightforward. From the human
perspective, we identified four kinds of ‘domains’:
• Organizational Domains: for example the Joint Task Force HQ (JTF HQ) ;
• Country Domains: each of the National command chains would be a separate, self-contained domain;
• Functional Domains: sets of entities collaborating on common tasks, for example Meteorology or Intelligence ;
• Individual Human Domains of Responsibility: Commanders have responsibility for their own HQ and all

subordinate ones (in practice they delegate). Hence the individual human domains of influence may overlap.

These types of domains are not entirely exclusive and there are many different levels of overlap and interaction
depending on the viewpoint taken. It is this complexity at the human level that creates difficulties for technical
systems.

79

3.2 Software Agent Domains

3.2.1 CoABS Grid Infrastructure
At the most basic level, the agents and systems to be integrated require infrastructure for discovery of other agents,
and messaging between agents. The CoABS Grid provides this. Based on Sun's “Jini” services which are themselves
based upon Java’s Remote Method Invocation, the Grid allows registration and advertisement of agent capabilities,
and communication by message-passing. Agents on the Grid can be added or removed, or their advertisements
updated, without reconfiguration of the network. Agents are automatically purged from the registry after a short time
if they fail. Multiple lookup services may be used, located by multicast or unicast protocols. In addition, the Grid
provides functionality such as logging, visualization, and more recently encryption of messages and agent
authentication.

3.2.2 KAoS Domain Management
The increased intelligence afforded by software agents is both a boon and a danger. By their ability to operate
independently without constant human supervision, agents can perform tasks that would be impractical or
impossible using traditional software applications. On the other hand, this additional autonomy, if unchecked, also
has the potential of effecting severe damage to military operations in the case of buggy or malicious agents. The
Knowledgeable Agent-oriented System (KAoS) provides services that help assure that agents from different
developers and running on diverse platforms will always operate within the bounds of established policies and will
be continually responsive to human control so that they can be safely deployed in operational settings (Bradshaw et
al., 1997, 2001). KAoS services and tools are intended to allow for the specification, management, conflict
resolution, and enforcement of policies within the specific contexts established by complex military organizational
structures.

KAoS domain management services can be used to group agents into logical domains corresponding to
organizational structures, administrative groups, and task-oriented teams. Within CoAX, these domains mirror the
human domains described above, allowing for complex hierarchical, heterarchical, and overlapping structures. An
agent domain consists of a unique instance of a domain manager (DM) along with any agents that are registered to
it. Alternatively, an intensionally-defined domain consists of a set of agents sharing one or more common properties
(e.g., the domain of all agents physically residing on some host). The function of a domain manager is to manage
agent registration, and serve as a single point of administration and enforcement for domain-wide, host-wide, VM-
wide, VM-container-wide, or agent-specific policies.

3.2.3 Domain policies
A policy is a declarative constraint governing the behavior of one or more agents, even when those agents may not
be domain-aware or where they may be buggy or malicious. For example, a policy may be declared that all
messages exchanged among agents in the JFAC HQ domain must be encrypted, or that an agent cannot
simultaneous belong to the US and the UK domain. A policy does not tell the agent how to perform its task; it rather
specifies the conditions under which certain actions can be performed. By way of an analogy to traffic management,
it is more like a set of individually-customizable stop signs and highway patrol officers that define and enforce the
rules of the road than it is like a route planner that helps agents find their way to their destinations.

Policies governing authorization, encryption, access control, and resource control are part of KAoS domain
management. However, due to our focus on agent systems our scope goes beyond these typical security concerns in
significant ways. For example, KAoS pioneered the concept of agent conversation policies (Bradshaw et al., 1997).
Teams of agents can be formed, maintained, and disbanded through the process of agent-to-agent communication
using an appropriate semantics. In addition to conversation policies, we are developing representations and
enforcement mechanisms for mobility policies, domain registration policies, and various forms of obligation
policies. These policies are represented in ontologies using the DARPA Agent Markup Language (DAML), and an
efficient description logic-based approach is used as the basis for much of the domain manager’s reasoning to
discover and resolve policy conflicts and to perform other kinds of policy analysis.

The separation of policy specification from policy-enforcement mechanisms allows policies to be dynamically re-
configurable, and relatively more flexible, fine-grained, and extensible. Agent developers can build applications
whose policies can change without necessarily requiring changes in source code. The rationale for using declarative
policies to describe and govern behavior in agent systems includes the following claims: easier recognition of non-
normative behavior, policy reuse, operational efficiency, ability to respond to changing conditions, and the
possibility of off-line verification.

80

3.3 Software Agent Domains in CoAX
The CoAX demonstrations contain software agents grouped into agent domains using the CoABS Grid, with the
policies enforced by KAoS domain management services. A typical domain configuration is shown in Figure 3.

GRID / Agent-enabledGRID / Agent-enabled InfrastructureInfrastructure / Admin Tools / Admin Tools

Process PanelProcess Panel MCAMCACoalition / JTFHQCoalition / JTFHQ

ObserversObservers
eGent/Ariadne

translator

D'AO

D'GO

JFAC HQJFAC HQ

AODB proxy

Airlift Tasking

MBP Plans

CAOC / Combat OpsCAOC / Combat Ops

MBP Ops

Event Panel

US National HQUS National HQ

AODB CAMPSUS Intel

UK National HQUK National HQ

UK Intel

GaoGao National HQ National HQ

GuardedGuarded

Gao Intel

GaoGao Obs Obs N
O

M
A

D
S

 G
ua

rd
ed

 O
bs

er
ve

rs

UN PanelUN Panel

CYBERSPACECYBERSPACEAriadneAriadne eGentseGents

SitViewer

WeatherWeather WeatherViz

D’Agent
translator

D’AgentsD’Agents

Figure 3. Typical CoAX domain structure; domains are indicated by rounded rectangles; agents by angled rectangles.
Some agents are proxies for agents or legacy systems that are not themselves domain aware. Each domain would also
contain a Domain Manager agent and a Matchmaker agent (omitted for clarity). Nesting of domains indicates a hierarchy
of responsibility and policy control. The agent acronyms are expanded in the body text.

Untrusted
Agent

Tasking &
Translation

MBP

CAMPS

KPAT
Policy Tool

MCA

Field
Observers

E-Gents
& NLI

AODB
Agent

Intel
Agent

Event
Panel

Event
Panels

Tasking &
Translation

Tasking &
Translation

Denial of
Service

controlled

Situation
Viewer

Guarded
Domain

The Web

Guard

Figure 4: Overview of technologies and agents. The central visualization and planning tools find and acquire data (e.g.
disposition of ground forces) and services (e.g. airlift scheduling and plan deconfliction) from the other agents and
systems, in some cases via intermediate tasking and translation agents. MBP = Master Battle Planner, MCA = Multi-level
Coordination Agent, KPAT = KAoS Policy Admin Tool, AODB = Air Operations Data Base, NLI = Natural Language
Interface, CAMPS = Consolidated Air Mobility Planning System.

81

4 Demonstration Storyboard and Technologies
In this section we progress through the storyboard created for the Binni Scenario, and describe each of the agent
systems and technologies brought into play for each part of the story. An overview of the interactions from the
agent/system point of view is shown in Figure 4.

4.1 Population of Domains
Following the outbreak of hostilities, the UN has deployed their UN War Avoidance Force for Binni (UNWAFB), to
stabilize the region. The active Coalition participants at this time are the UK, US and Gao.

In agent terms, a variety of agent domains are set up using the CoABS Grid infrastructure and the KAoS domain
management services, representing the organizational structures (the JTF HQ and the JFAC HQ), the nations (UK,
US, Gao) and various functional domains such as Weather and Observers. These domains are populated with a
number of agents, which register with their Domain Manager and optionally advertise their services with their
domain Matchmaker.

4.2 Data Gathering and Air Planning
After exploring options to separate the opposing forces and restore the peace in the region, the deployment of a
large ground observation and peace enforcement force and other courses of action have been rejected, and a
‘Firestorm’ mission has been decided upon. This will clear land to enable simpler remote and ground observations
with less risk to the Coalition peacekeepers. The Coalition undertakes initial information gathering and planning.

4.2.1 Master Battle Planner (MBP)
Air planning at the JFAC is performed using QinetiQ’s MBP, a highly effective visual planning tool for air
operations. MBP assists planners by providing them with an intuitive visualization on which they can manipulate the
air intelligence information, assets, targets and missions, using a map-based graphical user interface (Figure 5). This
enables an operator to build a battle scenario containing targets, offensive and defensive units, airspace measures
and other objects using simple dialogs and point-and-click techniques on the map. Objects on the map can then be
moved around, and their properties can be changed. Information such as the allegiance and status of units, and the
ranges of units may also be displayed.

Figure 5: Master Battle Planner map display of the fictional countries of Binni, Gao, and Agadez. A selected mission is
highlighted, proceeding from an airbase (BANM), to refueling tanker (ESSO), to the target via waypoints and airspaces,
and back to base by a different route.

82

The operator can interact with these entities and can plan individual air missions (or more complex packages of
missions) by dragging and dropping offensive units onto targets on the map. Supporting / defensive elements are
added in the same way. The system gives the operator analytical tools to assess the planned air operations for:
• the best utilization of resources; (e.g. by highlighting air units that are over-tasked);
• time-phasing (through charts and animated ‘fly-out’);
• concordance with the military guidance given.

MBP is a monolithic C++ application, which has been agent-enabled by wrapping it in Java code, using the Java
Native Interface. The agent-enabling of MBP allows it to receive all the scenario data (targets, assets, airspaces etc.)
from multiple information-providing agents (‘Intel Agents’ — see Figure 4) and update this information in near-real
time. Importantly, this process is integrated into the normal usage of MBP; when an operator views the status of an
object, agents are automatically tasked to update the information. Agents may also ‘push’ changes of status to MBP.
Information concerning other air missions can be accepted and merged with missions planned within MBP, as
described below. Missions can also be saved and exported, enabling other agents to reason with the data.

4.2.2 Consolidated Air Mobility Planning System (CAMPS)
The second real military system integrated into the demonstration is the Air Force Research Laboratory’s CAMPS
Mission Planner (Figure 6). CAMPS develops schedules for aircraft to pick up and deliver cargo within specified
time windows. It takes into account constraints on aircraft capabilities, port handling capabilities, crew availability
and work schedule rules, etc. Users of the planner develop plans (schedules) for aircraft to carry a particular cargo,
specifying the intermediate ports, air refueling tracks and the kinds of crews that will be available. They can also
specify a number of constraints on the airports potentially involved in the plans to be developed (Emerson &
Burstein, 1999; Burstein et al, 2000).

Figure 6: The CAMPS airlift planner, and the demonstration agent used to task the CAMPS agent with a simple
requirement: movement of cargo from Cyprus into the fictional country of Binni.

In the demonstration scenario, CAMPS schedules airlifts of cargo into Binni. These airlift flights could conflict with
offensive air missions, so the scheduled flights are requested from the CAMPS agent, and sent to MBP, forming part
of the normal MBP air visualization. This is achieved by an intermediate agent which tasks CAMPS, and also
translates between the KQML messages used by CAMPS and the XML messages used by the MBP agent.

83

This is an interesting example, as only partial translation is possible; CAMPS and MBP differ fundamentally in their
definition of air missions. A CAMPS mission consists of an arbitrary collection of flights, where a flight is a single
journey from A to B by a single aircraft. However, an MBP mission consists of a starting point and a route, which
must return to the starting point (perhaps by a different path), and may consist of multiple aircraft. CAMPS can
therefore produce routes that have no fully valid representation in MBP, although they could be partially represented
or indicated graphically.

4.2.3 Ariadne
In a similar manner, weather information extracted from websites by the Ariadne system from the University of
Southern California, Information Sciences Institute, is translated and forwarded to MBP, again forming part of the
normal picture of the air situation. Ariadne facilitates access to web-based data sources via a wrapper / mediator
approach (Knoblock and Minton, 1998). Wrappers that make web sources look like databases can be rapidly
constructed; these interpret a request (expressed in SQL or some other structured language) against a web source
and return a structured reply. The mediator software answers queries efficiently using these sources as if they
formed a single database. Translation of the XML from Ariadne into the XML expected by MBP was handled by
custom code, but can now be performed more easily using XSLT (Extensible Stylesheet Language
Transformations); this latter technique is used elsewhere in the demonstration (section 4.2.6).

4.2.4 I-X Process Panels (I-P2)
This Coalition planning process is supported using I-X process panels. I-X is a research program with a number of
different aspects intended to create a well-founded approach to allow humans and computer systems to cooperate in
the creation or modification of some product such as a plan, design or physical entity — i.e. it supports synthesis
tasks. I-X may also be used to support more general collaborative activity. The I-X research draws on earlier work
on O-Plan (Tate et al, 1998), <I-N-OVA> (Tate, 1996) and the Enterprise Project (Fraser and Tate, 1995) but seeks
to make the framework generic and to clarify terminology, simplify the approach taken, and increase re-usability
and applicability of the core ideas. Within CoAX, the I-X approach is being used to provide task and process
support and event-response capabilities to various Coalition participants (Figure 7).

Figure 7: I-X Process and Event Panels

The aim of an I-X Process Panel (I-P2) is to act as a workflow and messaging ‘catch all’ for its user. It can act in
conjunction with other panels for other users if desired. A panel:
• Can take any requirement to:
§ Handle an issue;
§ Perform an activity;

84

§ (in future) Add a constraint.
• Deals with these via:
§ Manual (user) activity;
§ Internal capabilities;
§ External capabilities (invoke or query);
§ Reroute or delegate to other panels or agents (pass);
§ Plan and execute a composite of these capabilities (expand).

• Receives reports and interprets them to:
§ Understand current status of issues, activities and constraints;
§ Understand current world state, especially status of process products;
§ Help the user control the situation.

• Copes with partial knowledge.

4.2.5 Resource control via domain policies
Gao has host nation status within the Coalition but its intentions are unclear and it is distrusted. Special steps are
taken to monitor the information passed to and from Gao within the Coalition. During the demonstration,
misinformation feeds by Gao (intended to displace the firestorm to allow Gao to take an advantage and move
forward) are detected and thwarted. Gao becomes belligerent and launches a denial of service attack against the
Coalition's C3I infrastructure.

Figure 8: A denial-of-service attack by the Gao agent is starving other agents of resources (note the decreasing rate of
processing in the console, bottom right). The Guard (top right) is monitoring the resource usage of the Gao agent. The
excessive resource usage triggers a change in domain policy, and the resource limits enforced by the AromaVM are
lowered. The policy can also be changed manually using KPAT, the KAoS Policy Administration Tool (bottom left).

The Gao agent in the demonstration is run under NOMADS, a mobile agent system from IHMC. The NOMADS
project aims to develop a set of distributed agent-based systems using the Java language and environment. The agent
code runs in a new Java Virtual Machine, the AromaVM. The AromaVM provides two key enhancements over
standard Java VMs: the ability to capture the execution state of threads and the ability to control resources consumed
by threads. By capturing the execution state of threads, the NOMADS agent system provides strong or transparent
mobility for agents.

85

In addition, the resource control mechanisms can be used for controlling and allocating resources used by agents as
well as to protect against denial of service attacks by malicious agents. When the Gao agent exceeds certain resource
limits, an automatic change in domain policy is triggered by a domain Guard, and the AromaVM is instructed to
reduce the resources available to the malicious agent (Figure 8). An operator can manually reduce the limits further,
using the KAoS Policy Admin Tool (KPAT).

4.2.6 Data feeds from mobile devices and observers
The firestorm mission has been planned and aircraft have already taken off. However the news media break a story
that wildlife in an important safari park in Binni may be in danger as the park overlaps the firestorm area. With
only an hour to go, the UN Secretary General's Special Representative to Binni asks the Joint Task Force
Commander to consider the wildlife risk aspects of the planned approach. Dynamic information gathering and
information feeds using agent technology are employed to create a real time feed of the position of some at-risk
large mammals.

This urgent issue is noted and broken down into sub-tasks using the event panels. The progress of aircraft is
monitored in near real-time on the Situation Viewer agent from QinetiQ, and the time left before aircraft are
committed to their targets is determined from MBP. A search is made for information on the locations of animals in
the safari park, and it is discovered that data are available on-line via agents running on monitoring devices attached
to large mammals in the park. The agents are eGents (agents that communicate by email) developed by Object
Services and Consulting, Inc (OBJS). Historical data from these devices is queried using a Natural Language
Interface from OBJS. To aid the planners, a live data-feed is created from the safari park website, using Ariadne to
extract data from the pages, and a translator agent using XSLT. The resulting message stream is sent to MBP and to
the Situation Viewer agent, allowing the current position and track of the animals to be visualized (Figure 9).

1.subscribe

2.inform

3.publish

4.transform

5.visualize

Figure 9: An eGent client subscribes to eGents running on mobile devices (wildlife tags). The data from these devices are
published by the client on a web page. Ariadne extracts data from the webpages, and produces XML. The XML is
transformed to another format by another agent using XSL Transformations, and finally sent to agents such as MBP and
Situation Viewer for visualization.

Data about the movement of ground forces, from the D’Agents field observation system from Dartmouth College,
are also transformed using another instance of the translator agent and visualized in the same way, allowing the
coalition to identify a convergence of hostile forces on the Laki safari park area.

86

4.2.7 Plan export and deconfliction
After consideration it is decided to continue with the firestorm mission, but to re-plan as necessary to avoid risk to
wildlife. Firestorm targets are adjusted in time or secondary targets selected as necessary for the first wave of
firestorm bombing. The impacts of these changes on the Coalition's medical and humanitarian operations are
automatically detected, and unintended conflicts between disjoint Coalition operations are avoided.

The air plans are revised using MBP, and then sent to a deconfliction agent to check them against planned activities
in other Coalition HQs. The Multi-level Coordination Agent (MCA) from the University of Michigan processes the
plans, using multiple levels of abstraction to generate solutions (Clement & Durfee, 1999). The planners are kept
informed of progress via their I-X event panels, and can view the results on the MCA display when ready (figure
10). The plans are adjusted iteratively until the conflicts are resolved.

4.2.8 Dynamic Forced Migration (Scram) of Observer Agents
Agadez seeks to use this complication to seize the initiative and launches fighter attacks against a Coalition
airborne high value asset (JSTARS) that is monitoring the operation. When this attack is detected, the JSTARS starts
to regress, which implies that the observer agents on the JSTARS will not be able to continue providing information
to the coalition.

In order to solve this problem, the administrator uses the forced migration (scram) capabilities of the NOMADS
mobile agent system to move the observer agents from the JSTARS platform to a secondary ground station platform.
The NOMADS system uses the state capture mechanisms in the Aroma VM to capture the full execution state of the
agents on the JSTARS. Once captured, the execution state is sent to a new platform where the agents can be
restarted without any loss of their ongoing computations (figure 11). This allows the observation agents to continue
to operate on the ground station and provide information to the coalition even after the JSTARS regresses.

Figure 10: Deconfliction of Coalition plans by the Multi-level Coordination Agent. In the second solution (lower half)
two missions (13Sqn and the FA18_UNIT) have been broken down to a lower level of abstraction to seek more optimal
coordination

87

Figure 11: Forced migration of observer agents from mobile platform to ground station, using NOMADS and AromaVM.
The updates from the DGO agent, initially on the JSTARS airborne platform (top right console) then start to appear on
the new ground platform (lower right console).

5 Assessment of Software Agents

5.1 Technical Progress to Date
The CoAX project officially began in February 2000 and we believe that the demonstrations we have undertaken
corroborate the hypotheses outlined in Section 1.3, demonstrating the utility of agent technology in Coalition
operations. We have put together a prototype Coalition C2 architecture that supports and embraces heterogeneity
and have exercised this in an agent-based C2 demonstration that enacts Coalition activities within the Binni
scenario, including both the planning and execution phases of operations.

The CoABS Grid and KAoS domain management capabilities have allowed us to interoperate, for the first time,
previously stand-alone US and UK military systems as well as a variety of agent-based information resources. In
particular, the CoABS Grid has played a vital role in rapid and robust integration of systems. We have shown how
agent organization, behavior, security and resources can be managed by explicit domain policy control.

Assessment work funded by the DARPA CoABS program has reported favorably on the performance issues of
agent-enabled infrastructures and the experiences of the CoAX team have shown that the agent-wrapping of legacy
systems and the integration of different agent systems at short notice is relatively straightforward. This task is
simpler where systems expose more of their internal information and methods. In addition, a heterogeneous set of
agents can be made to interoperate as long as implementers adhere to some minimum set of message and other
standards. Heterogeneity should be accepted and embraced as it is seen as being inevitable and can actually be
beneficial in a number of cases — especially in security terms.

Dynamic task, process and event handling is an important aspect of collaboration and Coalition C2. In the CoAX
demonstrations a process panel was used to indicate the start of the tasking and lead into the heart of the
demonstration. In the execution phase of operations, process panels in the main commands or headquarters were
more extensively used as they enabled a clearer military relevant view of what was happening between the agents in
less technical language than would otherwise be visible. Process and event panels have been found to be helpful in
keeping users informed of the current stage of collaboration, and maintaining a shared picture of the current state of
the collaborative efforts.

Our experience is that an agent-enabled environment gives the ability to create shared understanding and improved
visualization. Specific benefits were gained when agents worked semi-autonomously in the background to process

88

information and support decision making collaboratively with operators, and when agents were integrated into
existing tools so as not to disrupt familiar methods of operation.

5.2 Future Research Program
An aim only partially addressed in the current work is the construction and maintenance of a fully dynamic virtual
Coalition organization. This would involve:
• domains and agents added to the Coalition structure ‘on-the-fly’;
• Coalition partners joining / leaving unpredictably;
• handling of dynamic Coalition tasks, processes and events.

Capabilities under investigation for future demonstrations include
• obligation management, e.g. ensure that agents are meeting their commitments;
• improved agent collaboration and run-time interoperability achieved using semantic web languages and

technology (Allsopp et al, 2001a);
• richer domain organization and security policies (Bradshaw et. al., 2001);
• richer task, process and event management with more dynamically determined agent relationships (Tate et al.,

2002);
• a variety of agents providing new types of data, and data-processing capabilities such as threat classification and

track prediction.

Aspects of this work will be included in the Fleet Battle Experiment-Juliet 2002, part of the Millennium Challenge
joint integrating experiment.

5.3 Military Implications of the Results
The CoAX research program has shown how software agents can carry out tasks that enable interoperability
between information systems and infrastructure services brought together in a ‘come-as-you-are’ Coalition.

In the experiments so far, the software agents operated in a number of roles. They have worked ‘in the background’
— through matchmaking, domain management, process management and other agent services — to find, establish
and maintain the infrastructure, information and procedural links necessary to achieve and support interoperability
in a dynamically changing environment. In addition, they have worked collaboratively with human operators,
mediating requests for information and formatting and displaying the results almost transparently.

Thus an agent-enabled environment helps create shared understanding and improves the situational awareness of
military commanders. Moreover, it could make a significant contribution to the aims of Network-Centric Warfare
which is defined as follows: an approach to the conduct of warfare that derives its power from the effective linking
or networking of the warfighting enterprise. It is characterized by the ability of geographically dispersed forces to
create a high level of shared battlespace awareness that can be exploited via self-synchronization and other network-
centric operations to achieve commander’s intent.

One early lesson has been that Cyberspace should not be seen just as an information pipe between humans — it is a
Battlespace in its own right. This indicates that ‘Cyberspace Superiority’ should be obtained (as for any other part of
the Battlespace) by ensuring that Coalition forces are able to act decisively through software agents acting on behalf
of or mediating the actions of human users.

Dealing effectively with unpredictable changes — owing, for example, to the destructive activities of opponents or
because of systems failing and services being withdrawn — is a typical Coalition problem where software agents
could make a significant contribution. So far, we have shown that a software agent infrastructure is robust and, to
some extent, is ‘self-healing’. Our aim is to investigate this further to show that software agents can provide agility,
robustness, flexibility and additional functionality beyond that provided by the individual Coalition partners.

6 Concluding Remarks
The central hypothesis being investigated in CoAX is that the agent-based computing paradigm is a good fit to the
kind of computational support needed in Coalition operations. The evidence so far confirms this view: we have
shown a number of disparate agent systems working together in a realistic Coalition application and indicated the
value of the agent-based computing paradigm for rapidly creating such agent organizations. Agents can usefully
share, and manage access to, information across a stylized Coalition architecture.

89

Our conclusion is that software agents, together with agent-based infrastructures and services provided by the
CoABS Grid and KAoS, could play a key role in supporting Coalition operations. We think that this technology will
provide the ability to bring together and integrate systems quickly to aid in all aspects of Coalition operations,
without sacrificing security and control. Our long-term goal is to use this technology in the creation, support and
dynamic reconfiguration of virtual organizations — with Coalitions being an archetypal and timely example of an
area where this technology is vitally needed.

Acknowledgements

The authors gratefully acknowledge all those who contributed to the CoAX project, including Mark Burstein, Thom
Bartold, Maggie Breedy, John Carson, Jeff Cox, Brad Clement, Rob Cranfill, Jeff Dalton, Pete Gerken, Bob Gray,
Arne Grimstrup, Paul T. Groth, Greg Hill, Heather Holmback, Renia Jeffers, Martha Kahn, Shri Kulkarni, John
Levine, Jean Oh, Pradeep Pappachan, Shahrukh Siddiqui, Jussi Stader, and Andrzej Uszok. The various projects that
participated in CoAX were sponsored by the Defense Advanced Research Projects Agency (DARPA) and managed
by the U.S. Air Force Research Laboratory, except work by QinetiQ, which was carried out as part of the
Technology Group 10 of the UK Ministry of Defence Corporate Research Programme. The US Government and the
contributors' organizations are authorized to reproduce and distribute reprints for their purposes notwithstanding any
copyright annotation hereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing official policies or endorsements, either express or implied, of DARPA, the
US Government, the US Air Force Research Laboratory, the UK MoD, or the contributors' organizations.

References

Alberts, D. S., Garstka, J.J., Hayes, R.E., Signori, D. A. (2001) “Understanding Information-Age Warfare”, CCRP
Publication Series, 2001. ISBN 1-893723-04-6

Allsopp, D.N., Beautement, P., Bradshaw, J.M., Carson, J., Kirton, M., Suri, N. and Tate, A. (2001) “Software
Agents as Facilitators of Coherent Coalition Operations”, Sixth International Command and Control Research and
Technology Symposium, US Naval Academy, Annapolis, Maryland, USA, 19-21 June 2001.

Allsopp, D.N., Beautement, P., Carson, J. and Kirton, M. (2001a) “Toward Semantic Interoperability in Agent-
based Coalition Command Systems”, Proceedings of the First International Semantic Web Workshop, July 30-31,
2001, Stanford University, CA, USA, pp 209-228

Bradshaw, J.M., Suri, N., Kahn, M., Sage, P., Weishar, D. and Jeffers, R. (2001) “Terraforming Cyberspace:
Toward a Policy-based Grid Infrastructure for Secure, Scalable, and Robust Execution of Java-based Multi-agent
Systems”. IEEE Computer, 49-56, July 2001.

Bradshaw, J.M., Dutfield, S., Benoit, P. and Woolley, J.D. (1997) “KAoS: Toward an Industrial-Strength Generic
Agent Architecture,” Software Agents, AAAI Press/The MIT Press, Cambridge, Mass., pp. 375-418.

Burstein, M., Ferguson, G. and Allen, J. (2000) “Integrating Agent-Based Mixed-Initiative Control with an Existing
Multi-Agent Planning System”, Proceedings of the Fourth International Conference on MultiAgent Systems,
Boston, MA, 2000.

Clement, B.J. and Durfee, E.H. (1999) “Top-Down Search for Coordinating the Hierarchical Plans of Multiple
Agents”, Proceedings of the Third International Conference on Autonomous Agents, pages 252-259, May 1999.

Emerson, T. and Burstein, M. (1999) “Development of a Constraint-based Airlift Scheduler by Program Synthesis
from Formal Specifications”, Proceedings of the 1999 Conference on Automated Software Engineering, Orlando,
FL, September, 1999.

Fraser, J. and Tate, A. (1995) “The Enterprise Tool Set — An Open Enterprise Architecture”, Proceedings of the
Workshop on Intelligent Manufacturing Systems, International Joint Conference on Artificial Intelligence (IJCAI-
95), Montreal, Canada, August 1995.

Jennings, N R. (2001) “An Agent-based Approach for Building Complex Software Systems”. Communications of
the ACM. Vol 44, No: 4, 35-41. April 2001.

Knoblock, C. A., and Minton, S. (1998) “The Ariadne Approach to Web-based Information Integration”, IEEE
Intelligent Systems , 13(5), September/October 1998.

90

Rathmell, R.A. (1999) “A Coalition Force Scenario ‘Binni — Gateway to the Golden Bowl of Africa’”, Proceedings
of the International Workshop on Knowledge-Based Planning for Coalition Forces, (ed. Tate, A.) pp. 115-125,
Edinburgh, Scotland, 10th-11th May 1999.

Tate, A. (1996) “The <I-N-OVA> Constraint Model of Plans”, Proceedings of the Third International Conference
on Artificial Intelligence Planning Systems, (ed. Drabble, B.), pp. 221-228, Edinburgh, UK, May 1996, AAAI Press.

Tate, A., Dalton, J. and Levine, J. (1998) “Generation of Multiple Qualitatively Different Plan Options”, Fourth
International Conference on AI Planning Systems (AIPS-98), Pittsburgh, PA, USA, June 1998.

Tate, A., Dalton, J., and Stader, J. (2002) “I-P2 — Intelligent Process Panels to Support Coalition Operations”, in
Proceedings of the Second International Conference on Knowledge Systems for Coalition Operations (KSCO-2002)
(ed. Tate, A.), 23/24-Sep-2002, Toulouse, France.

© Copyright QinetiQ ltd 2002

91

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

